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Summary

Part lll consists of three chapters dealing with parallel, vector, and scalable architectures for building high-
performance computers. The multiprocessor system interconnects studied include crossbar switches,
multistage networks, hierarchical buses, and multidimensional ring, mesh, and torus architectures.
Three generations of multicomputer developments are reviewed. Then we consider message-passing
mechanisms.

Vector supercomputers appear either as pipelined multiprocessors or as SIMD data-parallel computers.
We study the architectures of the Cray Y-MP, C-90, Cray/MPP, NEC SX, Fujitsu VP-2000, VPP500, VAX
9000, Hitachi 5-820, Stardent 3000, CM-2, MasPar MP-1,and CM-5 for concurrent scalar/vector processing.

Chapter 9 introduces scalable architectures for massively paraltel processing applications. These
include both von Neumann, fine-grain, multithreaded, and dataflow architectures. Various latency-hiding
techniques are described, including the principles of multithreading. Case studies include the Intel Paragon,
Stanford Dash, MIT Alewife, ]-Machine and *T, Tera computer, KSR-l, Wisconsin Multicube, USC/OMP,
ETL EM4, etc.






Multiprocessors and
Multicomputers

in this chapter, we study system architectures of multiprocessors and multicomputers. Various cache
coherence protocols, synchronization methods, crossbar switches, multiport memory, and multistage
networks are described for building multiprocessor systems. Then we discuss ‘multicomputers with
distributed memories which are not globally shared. The Intel Paragon is used as a case study. Message-
passing mechanisms required with multicomputers are also reviewed. Single-address-space multicomputers
will be studied in Chapter 9. S

Parallel processing demands the use of efficient system interconnects for fast communication
among multiple processors and shared memory, 1/O, and peripheral devices. Hierarchical
buses, crossbar switches, and multistage networks are often used for this purpose.

A generalized multiprocessor system is depicted in Fig. 7.1. This architecture combines features from the
UMA, NUMA, and COMA models introduced in Section 1.4.1. Each processor P; is attached to its own local
memory and private cache. Multiple processors are connected to shared-memory modules through an inter-
processor-memory network (IPMN).

The processors share the access of 1/0 and peripheral devices through a processor 170 network (PION). Both
IPMN and PION are necessary in a shared-resource multiprocessor. Direct interprocessor communications
are supported by an optional interprocessor communication network (IPCN) instead of through the shared
memory.

Network Characteristics Each of the above types of networks can be designed with many choices. The
choices are based on the topology, timing protocol, switching method, and control strategy. Dynamic networks
are used in multiprocessors in which the interconnections are under program control. Timing, switching,
and contrel are three major operational characteristics of an interconnection network. The timing control
can be either synchronous or asynchronous. Synchronous networks are controlled by a global clock that
synchronizes all network activities. Asynchronous networks use handshaking or interlocking mechanisms to
coordinate fast and slow devices requesting use of the same network.

A network can transfer data using either circuit switching or packet switching, In circuit switching, once
a device is granted a path in the network, it occupies the path for the entire duration of the data transfer.
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In packet switching, the information is broken into small packets individually competing for a path in the
network.

(Shared Memory)

sMm,| |sMm, SM,,,
LR R 4

(Shared |/O and Peripherals})
Disk Units

Backup storage

int
. . PION Printer
-* . Terminals

s [

L ]

M .

Network
a0 8

| IPCN

Legends: IPMN (Inter-Processor-Memory Network)
PION (Processor- 1/O Network)
IPCN (Inter-Processor Communication Network)
P {Processor)
c (Cache}
SM  (Shared Memory}
LM {iLocal Memory)

Fig. 7.1 Interconnection structures in a generalized multiprocessor system with local memory, private caches,

* shared memory, and shared peripherals

Network control strategy is classified as centralized or distributed. With centralized control, a global
controller receives requests from all devices attached to the network and grants the network access to one or
more requesters. In a distributed system, requests are handled by local devices independently.

7.1.1 Hierarchical Bus Systems

A bus system consists of a hierarchy of buses connecting various system and subsystem components in a
computer. Each bus is formed with a number of signal, control, and power lines. Different buses are used to
perform different interconnection functions.

In general, the hierarchy of bus systems are packaged at different levels as depicted in Fig. 7.2, including
local buses on boards, backplane buses, and I/O buses.

Local Bus Buses implemented within processor chips or on printed-circuit boards are called Jocal buses.
On a processor board one may find a local bus which provides a common communication path among major
components (chips) mounted on the board. A memory board uses a memory bus to connect the memory with
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the interface logic. An I/O or network interface chip or board uses a dara bus. Each of these local buses
consists of signal and utility lines.
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IOP (1/C Processor), CC {Communication Controller)

Fig. 7.2 Bus systems at board level, backplane level, and VO levet

Backplane Bus A backplane is a printed circuit on which many connectors are used to plug in functional
boards. A system bus, consisting of shared signal paths and utility lines, is built on the backplane. This system
bus provides a common communication path among all plug-in boards.

Several backplane bus standards have been developed over time such as the VME bus (IEEE Standard
1014-1987), Multibus II (IEEE Standard 1296-1987), and Futurebus+ (IEEE Standard 896.1-1991}) as
introduced in Chapter 5. However, point to-point switched interconnects have emerged as more efficient
alternatives, as discussed in Chapters 5 and 13.

HO Bus Input/output devices are connected to a computer system through an /O bus such as the SCSI
(Small Computer Systems Interface) bus. This bus is made of coaxial cables with taps connecting disks,
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printer, and other devices to a processor through an /O controller (Fig. 7.2). Special interface logic is used to
connect various board types to the backplane bus.

Complete specifications for a bus system include logical, electrical, and mechanical properties, various
application profiles, and interface requirements. Our study will be confined to the logical and application
aspects of system buses. Emphasis will be placed on the scalability and bus support for cache coherence and
fast synchronization.

For example, the core of the Encore Multimax multiprocessor was the Nanobus, consisting of 20 slots, a
32-bit address, a 64-bit data path, and a 14-bit vector bus, and operating at a clock rate of 12.5 MHz with a
total memory bandwidth of 100 Mbytes/s. The Sequent multiprocessor bus had a 64-bit data path, a 10-MHz
clock rate, and a 32-bit address, for a channel bandwidth of 80 Mbytes/s. A write-back private cache was used
to reduce the bus traffic by 50%.

Digital bus interconnects can be adopted in commercial systems ranging from workstations to
minicomputers, mainframes, and multiprocessors. Hierarchical bus systems can be used to build medium-
sized multiprocessors with less than 100 processors. However, the bus approach is limited by bandwidth
scalability and the packaging technology employed. :

Hierarchical Buses and Caches Wilson {1987) proposed a hierarchical cache/ bus architecture as shown
in Fig. 7.3. This is a multilevel tree structure in which the leaf nodes are processors and their private caches
(denoted P; and C; in Fig. 7.3). These are divided into several clusters, each of which is connected through

a cluster bus.
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Fig. 1.3 . A hierarchical cachefbus architecture for designing a scalable: multiprocessor {Courtesy: of Wilson;
" reprinted from Proc. of Annugl Int. Symp. on Computer Architecture, 1987). - -

An intercluster bus is used to provide communications among the clusters. Second level caches {denoted
as Cy;) are used between each cluster bus and the intercluster bus. Each second-level cache must have a
capacity that is at least an order of magnitude larger than the sum of the capacities of all first-level caches
connected beneath it

Each single cluster operates as a single-bus system. Snoopy bus coherence protocols can be used 10
establish consistency among first-level caches belonging to the same cluster. Second-level caches are used to
extend consistency from each local cluster to the upper level.
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The upper-level caches form another level of shared memory between each cluster and the main memory
modules connected to the intercluster bus. Most memory requests should be satisfied at the lower-level
caches. Intercluster cache coherence is controlled among the second-level caches and the resulting effects are
passed to the lower level.

S0

The Uliramax had a two-level hierarchical-bus architecture as depicted in Fig. 7.4. The Ultramax architecture
was very similar to that characterized by Wilson, except that the global Nanobus was used only for intercluster
communications.

Example 7.1 Encore Ultramax multiprocessor architecture

Global Nanobus

CI- 7]

Cluster Nanobus Cluster| Nanobus

a3 S
mm | [Pc]eee|PC] PC|esefPC| [ pm

Legends: P = Processor
PC = Private Cache
MM = Main Memory
S8C = Shared Cache
RS = Route Switch

Fig.7.4 The Ultraimix mnltipmcessor architecture using hierarchical buses with multiple clusters (Courresy of
Encore Computer Corporation, 1987)

The shared memories were distributed to all clusters instead of being connected to the intercluster bus. The
cluster caches formed the second-level caches and performed the same filtering and cache coherence control
for remote accesses as in Wilson’s scheme. When an access request reached the top bus, it would be routed
down to the cluster memory that maiched it with the reference address.

The idea of using bridges between multiprocessor clusters is to allow transactions initiated on a local
bus to be completed on a remote bus. As exemplified in Fig. 7.5, multiple buses are used to build a very
large system consisting of three multiprocessor clusters. The bus used in this example is Futurebus+, but
the basic idea is more general. Bridges are used to interface the clusters. The main functions of a bridge
include communication protocol conversion, interrupt handling in split transactions, and serving as cache
and memory agents. '
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Fig. 7.5 A mlﬁpmcessqr system wsing multiple Futurebus+ segments: (Reprinted with permission from IEEE
. Standard 896.1-1991, copyright © 1991 by IEEE, inc.) '

7.1.2 Crossbar Switch and Multiport Memory

Switched networks provide dynamic interconnections between the inputs and outputs. Major classes of
switched networks are specified below, based on the number of stages and blocking or nonblocking. We
describe the crossbar networks and multiport memory structures first and then the multistage networks.
Crossbar networks are mostly used in small or medium-size systems. The multistage networks can be
extended to larger systems if the increased latency problem can be suitably addressed.

Network Stages Depending on the interstage connections used, a single-stage network is also called a
recirculating network because data items may have to recirculate through the single stage many times before
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reaching their destination. A single-stage network is cheaper to build, but multiple passes may be needed to
establish certain connections. The crossbar switch and multiport memory organization are both single-stage
networks.

A multistage network consists of more than one stage of switch boxes. Such a network should be able to
connect from any input to any output. We will study unidirectional multistage networks in Section 7.1.3. The
choice of interstage connection patterns determines the network connectivity. These patterns may be the same
or different at different stages, depending the class of networks to be designed. The Omega network, Flip
network, and Baseline networks are all multistage networks.

Blocking versus Nonblocking Networks A multistage network is called blocking if the simultaneous
connections of some multiple input-output pairs may result in conflicts in the use of switches or communication
links.

Examples of blocking networks include the Omega (Lawrie, 1975), Baseline (Wu and Feng, 1980), Banyan
(Goke and Lipovski, 1973), and Delta networks (Patel, 1979). Some blocking networks are equivalent after
graph transformations. In fact, most multistage networks are blocking in nature. In a blocking network,
multiple passes through the network may be needed to achieve certain input-output connections.

A multistage network is called nonblocking if it can perform all possible connections between inputs
and outputs by rearranging its connections. In such a network, a connection path can always be established
between any input-output pair. The Benes networks (Benes, 1965} have such a capability. However, Benes
networks require almost twice the number of stages to achieve the nonblocking connections. The Clos
networks (Clos, 1953) can also perform all permutations in a single pass without blocking. Certain subclasses
of blocking networks can also be made nonblocking if extra stages are added or connections are restricted.
The blocking problem can be avoided by using combining networks to be described in the next section.

Crossbar Networks In a crossbar network, every input port is connected to a free output port through a
crosspoint switch (circles in Fig. 2.26a) without blocking. A crossbar network is a single-stage network built
with unary switches at the crosspoints.

Once the data is read from the memory, its value is returned to the requesting processor along the same
crosspoint switch. In general, such a crossbar network requires the use of n x m crosspoint switches. A square
crossbar (# = m1) can implement any of the #! permutations without biocking.

As introduced earlier, a crossbar switch network is a single-stage, nonblocking, permutation network.
Each crosspoint in a crossbar network is a unary switch which can be set open or closed, providing a point-
to-point connection path between the source and destination.

All processors can send memory requests independently and asynchronously. This poses the problem
of multiple requests destined for the same memory module at the same time. In such cases, only one of the
requests is serviced at a time. Let us characterize below the crosspoint switching operations.

Crosspoint Switch Design  Out of n crosspoint switches in each column of an # x m crossbar mesh, only
one can be connected at a time. To resolve the contention for each memory module, each crosspoint switch
must be designed with extra hardware.

Furthermore, each crosspoint switch requires the use of a large number of connecting lines accommodating
address, data path, and control signals. This means that each crosspoint has a complexity matching that of a
bus of the same width.
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For an » x n crossbar network, this implies that #* sets of crosspoint switches and a Jarge number of lines
are needed. What this amounts to is a crossbar network requiring extensive hardware when n is very large. So
far only relatively small crossbar networks with n < 16 have been built into commercial machines.

On each row of the crossbar mesh, multiple crosspoint switches can be connected simultaneously.
Simultaneous data transfers can take place in a crossbar between n pairs of processors and memories.

Figure 7.6 shows the schematic design of a row of crosspoint switches in a single crossbar network.
Multiplexer modules are used to select one of n read or write requests for service. Each processor sends in an
independent request, and the arbitration logic makes the selection based on certain faimess or priority rules.

(n sets)
Data Data
Multiplexer
modules h processors
Address (a tree) Address
Shared [T - .
memory Read/Write Read/Write

module
M) TTControl

la———— Request
L. » Acknowledge
itration [ Request
. Art:l r?tt:lon . Acknowledge 1 Processors
Memory o9 .
Enable . Reguest
—» Acknowledge

Fig. 7.6 - Schematic design of a row of crosspoint switches in 2 crossbar network

For example, a 4-bit control signal will be generated for n = 16 processors. Note that n sets of data,
address, and read/write lines are connected to the input of the multiplexer tree. Based on the control signal
received, only one out of # sets of information lines is selected as the output of the multiplexer tree.

The memory address is entered for both read and write access. In the case of read, the data fetched from
memory are returned to the selected processor in the reverse direction using the data path established. In the
case of write, the data on the data path are stored in memory.

Acknowledge signals are used to indicate the arbitration result to all requesting processors. These signals
initiate data transfer and are used to avoid conflicts. Note that the data path established is bidirectional, in
order to serve both read and write requests for different memory cycles.

Crossbar Limitations A single processor can send many requests 1o multiple memory modules. For an
1 x n crossbar network, at most n memory words can be delivered to at most # processors in each cycle.

The crossbar network offers the highest bandwidth of # data transfers per cycle, as compared with only
one data transfer per bus cycle. Since all necessary switching and conflict resolution logic are built into the
crosspoint switch, the processor interface and memory port logic are much simplified and cheaper. A crossbar
network is cost-effective only for small multiprocessors with a few processors accessing a few memory
modules. A single-stage crossbar network is not expandable once it is built,
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Redundancy er parity-check lines can be built into each crosspoint switch to enhance the fault tolerance
and reliability of the crossbar network.

Multiport Memory Because building a crossbar network into a large system is cost prohibitive, some
maimframe multiprocessors used a multiport memory organization. The idea is to move all crosspoint
arbitration and swiiching functions associated with each memory module into the memory controller.

Thus the memory module becomes more expensive due to the added access ports and associated logic as
demonstrated in Fig. 7.7a. The circles in the diagram represent » switches tied to » input ports of a memory
module. Only one of n processor requests can be honored at a time,

The multiport memory organization is a compromise solution between a low-cost, low-performance bus
system and a high-cost, high-bandwidth crossbar system. The contention bus is time-shared by all processors
and device modules attached. The multiport memory must resolve conflicts among processors.

This memory structure becomes expensive when m and i become large. A typical mainframe multiprocessor
configuration may have »n = 4 processors and i = 16 memory modules. A multiport memory multiprocessor
is not scalable because once the ports are fixed, no more processors can be added without redesigning the
memory controller.

Another drawback is the need for a large number of interconnection cables and connectors when the
configuration becomes large. The ports of each memory module in Fig. 7.7b are prioritized. Some of the
processors are CPUs, some are I/O processors, and some are connected to dedicated processors.
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(b) Memory ports prioritized or privileged in each module by numbers

Fig.7.7 Multport memory organizations for muitiprocessor systems (Courtesy of P H. Enslow, ACM Computing
Surveys, March 1977)
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For example, the Univac 1100/94 multiprocessor consisted of four CPUs, four /O processors, and two
scientific vector processors connected to four shared-memory modules, each of which was 10-way ported.
The access to these ports was prioritized under operating system control. In other multiprocessors, part of the
memory module can be made private with ports accessible only to the owner processors.

7.1.3 Multistage and Combining Networks

Multistage networks are used to build larger multiprocessor systems. We describe two multistage networks,
the Omega network and the Butterfty network, that have been built into commercial machines. We will study a
special class of multistage networks, called combining networks, for resolving access conflicts automatically
through the network. The combining network was built into the NYU’s Ultracomputer.

Routing in Omega Network We have defined the Omega network in Chapter 2. In what follows, we
describe the message-routing algorithm and broadcast capability of Omega network. This class of network
was built into the [llinois Cedar multiprocessor (Kuck et al., 1987), into the IBM RP3 (Pfister et al., 1985),
and into the NYU Ultracomputer (Gottlieb et al., 1983). An 8-input Omega network is shown in Fig. 7.8.

In general, an n-input Omega network has log, n stages. The stages are labeled from 0 to log, # — 1 from
the input end to the output end. Data routing is controlled by inspecting the destination code in binary. When
the ith high-order bit of the destination code is a 0, a 2 x 2 switch at stage i connects the input to the upper
output. Otherwise, the input is directed to the lower output.

Two switch settings are shown in Figs. 7.8a and b with respect to permutations 7; = (0, 7, 6, 4, 23(1, 3)
(5) and m, = (0, 6,4, 7, 3} (1, 5) (2), respectively.

The switch settings in Fig. 7.8a are for the implementation of 7;, which maps 0 — 7,7 — 6,6 — 4,
4-52,20,1-13,3—1,5 5. Consider the routing of a message from input 001 to output O11. This
involves the use of switches A, B, and C. Since the most significant bit of the destination 011 is a “zero”,
switch A must be set straight so that the input 001 is connected to the upper output (labeled 2). The middle
bit in 011 is a “one”, thus input 4 to switch B is connected to the lower output with a “crossover” connection.
The least significant bit in 011 is a “one”, implying a flat connection in switch C. Similarly, the switches A,
E, and D are set for routing a message from input 101 to output 101. There exists no conflict in all the switch
settings needed to implement the permutation 7, in Fig. 7.8a.

Now consider implementing the permutation 7, in the 8-input Omega network (Fig. 7.8b). Conflicts in
switch settings do exist in three switches identified as F, G, and H. The conflicts occurring at F are caused
by the desired routings 000 — 110 and 100 — 111. Since both destination addresses have a leading bit I,
both inputs to switch F must be connected to the lower output. To resolve the conflicts, one request must be
blocked.

Similarly, we see conflicts at switch G between 011 — 000 and 111 — 011, and at switch H between
101 — 001 and 011 — 000. At switches I and J, broadcast is used from one input to two outputs, which is
allowed if the hardware is built to have four legitimate states as shown in Fig. 2.24a. The above example
indicates the fact that not all permutations can be implemented in one pass through the Omega network.

The Omega network is a blocking network. In case of blocking, one can establish the conflicting
connections in several passes, For the example 7, we can connect 000 — 110, 001 — 101, 010 — 010,
101 — 001, 110 — 100 in the first pass and 011 — 000, 100 -> 111, 111 — 011 in the second pass. In general,
if 2 x 2 switch boxes are used, an n-input Omega network can implement n"? permutations in a single pass.
There are n! permutations in total, ' '
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Fig. 7.8 Two switch setiings of an 8 X 8 Omega network built with 2 x 2 switches.
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Forn=8, this implies thatonly 8*/8! =4096/40320=0.1016= 10.16% of all permutations are implementable
in a single pass through an 8-input Omega network. All others will cause blocking and demand up to three
passes to be realized. In general, a maximum of log, » passes are needed for an n-input Omega. Blocking is
not a desired feature in any multistage network, since it lowers the effective bandwidth.

The Omega network can also be used to broadcast data from one source to many destinations, as exemplified
in Fig. 7.9a, using the upper broadcast or lower broadcast switch settings. In Fig. 7.9a, the message at input

001 is being broadcast to all eight outputs through a binary tree connection.

The two-way shuffle interstage connections can be replaced by four-way shuffle interstage connections
when 4 X 4 switch boxes are used as building blocks, as exemplified in Fig. 7.9b for a 16-input Omega

network with log,

16 = 2 stages.
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Fig. 7.9 Broadcast capability of an Omega network builc with 4 x 4 switches

Note that a four-way shuffle corresponds to dividing the 16 inputs into four equal subsets and then
shuffling them evenly among the four subsets. When & X & switch boxes are used, one can define a k-way
shuffle function to build an even larger Omega network with log, » stages.

Routing in Butterfly Networks This class of networks is constructed with crossbar switches as building
blocks. Figure 7.10 shows two Butterfly networks of different sizes. Figure 7.10a shows a 64-input Butterfly
network built with two stages (2 = logs 64) of 8 x 8 crossbar switches. The eight-way shuffie function is used
to establish the interstage connections between stage 0 and stage 1. In Fig. 7.10b, a three-stage Butterfly
network is constructed for 512 inputs, again with 8 x 8 crossbar switches. Each of the 64 x 64 boxes in
Fig. 7.10b is identical to the two-stage Butterfly network in Fig. 7.10a.

In total, sixteen 8 x 8 crossbar switches are used in Fig. 7.10a and 16 x 8 + 8 x 8 = 192 are used in
Fig. 7.10b. Larger Butterfly networks can be modularly constructed using more stages. Note that no broadcast
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connections are allowed in a Butterfly network, making these networks a restricted subclass of Omega
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The Hot-Spot Problem When the network traffic is nonuniform, a hot spot may appear corresponding to
a certain memory module being excessively accessed by many processors at the same time. For example, a
semaphore variable being used as a synchronization barrier may become a hot spot since it is shared by many
processors.

Hot spots may degrade the network performance significantly. In the NYU Ultracomputer and the IBM
RP3 multiprocessor, a combining mechanism has been added to the Omega network. The purpose was 1o
combine multiple requests heading for the same destination at switch points where conflicts are taking place.

An atomic read-modify-write primitive Fetch&Add(x, ), has been developed to perform parallel memory
updates using the combining network.

Fetch®Add This atomic memory operation is effective in implementing an N-way synchronization with a
complexity independent of N. In a Fetch&Add(x, €} operation, x is an integer variable in shared memory and
e is an integer increment. When a single processor executes this operation, the semantics is

Fetch&Add (x, €)
{temp ¢ x5
x « tempte (7.1)
return  femp}

When N processes attempt Fetch&Add(x, ) at the same memory word simultaneously, the memory is
updated only once following a serialization principle. The sum of the N increments, e; +e; + ... + ey, is
produced in any arbitrary serialization of the N requests.

This sum is added to the memory word x, resulting in anew valuex te +e; +... tey. The values returned
to the N requests are all unique, depending on the serialization order followed. The net result is similar to
a sequential execution of N Fetch&Adds but is performed in one indivisible operation. Two simultaneous
requests are combined in a switch as illustrated in Fig. 7.11.

One of the following operations will be performed if processor Py executes Ans; « Fetch&Add(x, &)
and P, executes Ans; « Fetch&Add(x, e;) simultaneously on the shared variable x. If the request from P, 1s
executed ahead of that from P; , the following values are retuned:

Ansl e— X
A.nSZ «— x+ (3] (7.2)

If the execution order is reversed, the following values are retarned:

AﬂSl «— xte
Ans, &« x {7.3)

Regardless of the executing order, the valuex + e, + ¢; is stored in memory. It is the responsibility of the
switch box to form the sum e; + e, , transmit the combined request Fetch&Add(x, e, + e,), store the value
e, (or e,) in a wait buffer of the switch, and return the values x and x + ¢, to satisfy the original requests
Fetch&Add(x, e,) and Fetch&Add(x, e;), respectively, as illustrated in Fig. 7.11 in four steps.
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Fetch&Add (x, e4)
]

Switch Main Memory

Fetch&Add (x, e,)

p, _rocnaadd (x ep) | [ ] L]

{a) Two requests meet at a switch

Pf—— |

| Switch Fetch&Add(x,e+e5) Main Memory

Ppo—— | EEEN

{b} The switch forms the sum e, + e,, stores e, in buffer, and transmits the combined
request to memory

Pf—

Switch Main Memory

X+e,+

{c) The original value stored in x is returned to switch, and the new value x + e, + o,
is stored in memory

X

T

Switch Mair Memory

e x| [] [xere, |
(d) The values x and x + e, are returned to P, and P, respectively

Fig.7.11  Two Fetch&Add operations are combined to access a shared variabie simultanecusly via a combining:

nerwork

Applications and Drawbacks The Fetch&Add primitive is very effective in accessing sequentially
allocated queue structures in parallel, or in forking out parallel processes with identical code that operate on
different data sets.

Consider the parallel execution of N independent iterations of the following Do loop by p processors:
Doall ¥ =1 to 100

<Code using N>
Endall

Each processor executes a Fetch&Add on & before working on a specific iteration of the loop. In this
case, a unique value of N is returned to each processor, which is used in the code segment. The code for each
processor is written as follows, with ¥ being initialized as 1:

n « Fetch&Add (N, 1) L
While (7 < 100) Doall 3
{Code using n}
n < Fetch&Add(N, 1)
Endall

The advantage of using a combining network to implement the Fetch&Add operation is achieved at a
significant increase in network cost. According to NYU Ultracomputer experience, message queueing and
combining in each bidirectional 2 x 2 switch box increased the network cost by a factor of at least 6 or more.



296ﬂ Advanced Computer Architecture

Additional switch cycles are also needed to make the entire operation an atomic memory operation.
This may increase the network latency significantly. Multistage combining networks have the potentiai of
supporting large-scale multiprocessors with thousands of processors. The problem of increased cost and
latency may be alleviated with the use of faster and cheaper switching technology in the future.

Multistage Networks in Real Systems  The IBM RP3 was designed to include 512 processors using a high-
speed Omega network for reads or writes and a combining network for synchronization using Fetch& Adds.
A 128-port Omega network in the RP3 had a bandwidth of 13 Gbytes/s using a 50-MHz clock.

Multistage Omega networks were also built into the Cedar multiprocessor (Kuck et al., 1986) at the
University of Illinois and in the Ultracomputer (Gottlieb et al., 1983} at New York University.

The BBN Butterfly processor (TC2000) used 8 x 8§ crossbar switch modules to build a two-stage 64 x 64
Butterfly network for a 64-processor system, and a three-stage 51 2 % 512 Butterfly switch (see Fig. 7.10) for
a 512-processor system in the TC2000 Series. The switch hardware was clocked at 38 MHz with a 1-byte
data path. The maximum interprocessor bandwidth for a 64-processor TC2000 was designed at 2.4 Gbytes/s.

The Cray Y-MP multiprocessor used 64-, 128-, or 256-way interleaved memory banks, each of which
could be accessed via four ports. Crossbar networks were used between the processors and memory banks
in alt Cray multiprocessors. The Alliant FX/2800 used crossbar interconnects between seven four-processor
(1860) boards plus one /0 board and cight shared, interleaved cache boards which were connected to the
physical memory via a memory bus.

Cache coherence protocols for coping with the multicache inconsistency problem are
considered below. Snoopy protocols are designed for bus-connected systems. Directory—based protocols
apply 1o network-connected systems. Finally, we study hardware support for fast synchronization. Software-
implemented synchronization will be discussed in Chapter il

7.2.1 The Cache Coherence Problem

In a memory hierarchy for a multiprocessor system, data inconsistency may occur between adjacent levels
or within the same level. For example, the cache and main memory may contain inconsistent copies of the
same data object. Multiple caches may possess different copies of the same memory block because multiple
processors operate asynchronously and independently.

Caches in a multiprocessing environment introduce the cache coherence problem. When multiple
processors maintain locally cached copies of a unique shared-memory 'ocation, any local modification of the
location can result in a globally inconsistent view of memory. Cache coherence schemes prevent this problem
by maintaining a uniform state for each cached block of data. Cache inconsistencies caused by data sharing,
process migration, or /O are explained below.

Inconsistency in Data Sharing The cache inconsistency problem occurs only when multiple private
caches are used. In general, three sources of the problem are identified: sharing of writable data. process
migration, and /O actwity. Figure 7.12 illustrates the problems caused by the first two sources. Consider a
multiprocessor with two processors, each using a private cache and both sharing the main memory. Let X be



Muttiprocessors and Multicomputers _—- 297

a shared data element which has been referenced by both processors. Before update, the three copies of X are
consistent.

If processer P; writes new data X" into the cache, the same copy will be written immediately into the
shared memory under a write-through policy. In this case, inconsistency occurs between the two copies (X
and X) in the two caches (Fig. 7.12a).

On the other hand, inconsistency may also occur when a write-back policy is used, as shown on the right
in Fig. 7.12a. The main memory will be eventually updated when the modified data in the cache are replaced
or invalidated.

Process Migration and I/O  Figure 7.12b shows the occurrence of inconsistency after a process containing
a shared variable X migrates from processor 1 to processor 2 using the write-back cache on the right. In the
middle, a process migrates from processor 2 to processor | when using write-through caches.

Processor | P4 Py Py Py Py P3
[ l I E | ]
Caches | X X X X X X
T T | I
s [ v] l
hared
Memory X X X
Before update Write-through Write-back

{a} Inconsistency in sharing of writable data

Processors| Py Py Py Pa Py Pa
| [ | [ [ |
Caches| X | X X X X
’ T L. i
C T T T T,
g | Ly v[:
Share s
Memory X X X
Before Migration Write-through Write-back

(b} Inconsistency after process migration

Fig.7.12 Cache coherence problems in data sharing and in process migration (Adapted from Dubois, Scheurich,
and Briggs 1988)

In both cases, inconsistency appears between the two cache copies, labeled X and X”. Special precautions
must be exercised to avoid such inconsistencies. A coherence protocol must be established before processes
can safely migrate from one processor to another.

Incensistency problems may occur during 1/0 operations that bypass the caches.

When the I/O processor Joads a new data X into the main memory, bypassing the write through caches
(middle diagram in Fig. 7.13a), inconsistency occurs between cache 1 and the shared memory. When
outputting a data directly from the shared memory (bypassing the caches), the write-back caches also create
inconsistency.
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One possible solution to the 'O inconsistency problem is to attach the 1/O processors (IOP| and IOP;)
to the private caches (C) and C3), respectively, as shown in Fig. 7.13b. This way 1/0 processors share caches
with the CPU. The IO consistency can be maintained if cache-to-cache consistency is maintained via the bus.
An obvious shortcoming of this scheme is the likely increase in cache perturbations and the poor locality of
/O data, which may result in higher miss ratios.

Py Py Py Pa Py Py | Processors
]
X X X X X X Caches
1
1 g == B
X < X N Ie;
Processor

Memory /O Memory (Input} Memory (Output)
{Write-through) (Write-back)

{a) VO operations bypassing the cache

Legends:
Py 0P, Py IOP, P; (processor i)
IOP; (/O Processor 1)
C, Cy C, (Cache i)

Bus

l

Shared Memory

(b) A possible solution

Fig.7.13 Cache inconsistency after an IO operation and a possible solution (Adapted from Dubois, Scheurich,
and Briggs, 1988) . . .

Two Protocol Approaches Many of the early commercially available multiprocessors used bus-based
memory systems. A bus is a convenient device for ensuring cache coherence because it allows all processors
in the system to observe ongoing memory transactions. If a bus transaction threatens the consistent state ofa
locally cached object, the cache controller can take appropriate actions to invalidate the local copy. Protocols
using this mechanism to ensure coherence are called snoopy protocols because each cache snoops on the
transactions of other caches.

On the other hand, scalable multiprocessor systems interconnect processors using short point-to-point links
in direct or multistage networks. Unlike the situation in buses, the bandwidth of these networks increases
as more processors are added to the system. However, such networks do not have a convenient snooping
mechanism and do not provide an efficient broadcast capability. In such systems, the cache coherence
problem can be solved using some variant of directory schemes.

In general, a cache coherence protocol consists of the set of possible states in the local caches, the state in
the shared memory, and the state transitions caused by the messages transported through the interconnection
network to keep memory coherent. In what follows, we first describe the snoopy protocols and then the
directory-based protocols. Other approaches to designing a scalable cache coherence interface will be studied
in Chapter 9.
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7.2.2 Snoopy Bus Protocols

In using private caches associated with processors tied to a common bus, two approaches have been practiced
for maintaining cache consistency: write-invalidate and write-update policies. Essentially, the write-invalidate
policy will invalidate all remote copies when a local cache block is updated. The write-update policy will
broadcast the new data block to all caches containing a copy of the block.

Snoopy protocols achieve data consistency among the caches and shared memory through a bus watching
mechanism. As illustrated in Fig. 7.14, two snoopy bus protocols create different results. Consider three
processors (Py, Py, and P,) maintaining consistent copies of block X in their local caches (F ig. 7.14a) and in
the shared-memory module marked X,

Using a write-invalidate protocol, the processor P; modifies (writes) its cache from X to X', and all other
copies are invalidated via the bus (denoted 7 in Fig. 7.14b). Invalidated blocks are sometimes called dirty,
meaning they should not be used. The write-update protocol (Fig. 7.14c) demands the new block content X
be broadcast to all cache copies via the bus. The memory copy is also updated if write-through caches are
used. In using write-back caches, the memory copy is updated later at block replacement time.

Shared n Shared
[ I ] [ X l b l_—'_-l Mei:?:ry | —I I T ] see I_—’_—IMear;zry
I I — ) Bus — 1 1 Bus
Gaches (0 ... O caces
@ @ e Processors e @ e Processors

(a} Consistent copies of block X are in shared memory (b) After a write-invalidate operation by Py

and three processor caches
I X Shared
see [:‘ Memory

3 Bus

L] l

[ |

C

e P e Processors

(c) After a write-update operation by P,

Fig. 7.14  Write-invalidate and write-update coherence protocols for write through caches (1: invalidate)

Write-Through Caches The states of a cache block copy change with respect to read, write, and
replacement operations in the cache. Figure 7.15 shows the state transitions for two basic write-invalidate
snoopy protocols developed for write-through and write-back caches, respectively. A block copy of a write-
through cache /" attached to processor i can assume one of two possible cache states: valid or invalid (Fig.
7.15a).

Aremote processor is denoted /, where j # i. For each of the two cache states, six possible events may take
place. Note that all cache copies of the same block use the same transition graph in making state changes.

In a valid state (Fig. 7.15a), all processors can read (R(i), R(7)) safely. Local processor i can also write
(W (i) safely in a valid state. The invalid state corresponds to the case of the block either being invalidated
or being replaced (Z(i) or Z(})).
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Wherever a remote processor writes (W(j)) into its cache copy, all other cache copies become invalidated.
The cache block in cache i becomes valid whenever a successtul read (R(?)) or write (W(?)) is carried out by
a local processor i,

The fraction of write cycles on the bus is higher than the fraction of read cycles in a write-through cache,
due to the need for request invalidations. The cache directory (registration of cache states) can be made in
dual copies or dual-ported to filter out most invalidations. In case locks are cached, an atomic Test&Set must
be enforced.

Write-Back Caches The valid state of a write-back cache can be further split into two cache states, labeled
RW (read-write) and RO (read-only) as shown in Fig. 7.15b. The INV (invalidated or not-in-cache) cache
state is equivalent to the invalid state mentioned before. This three-state coherence scheme corresponds to
an ownership protocol.

(D), W)

R() ai

20 Wi

& R()

W) i
W), Z6)

(a) Write-through cache

RW: Read-Write

] RO: Read Only
Wi w() INV: Invalidated or
Z() not in cache
RG), Z(j), Wi). Z(1)
W(i) = Write to block by processor /. W(j) = Write to block copy in cache j by pracessor Jj#i
R(i) = Read block by processor f. R(j) = Read block copy in cache j by processor j=i
Z(i) = Replace block in cache i. Z(j) = Replace block copy in cache j= /.

(b) Write-back cache

Fig.7.45 Two state-transition graphs for a cache block using write-invalidate snoopy protocols {Adapted from
Dubois, Scheurich, and Briges, 1988) | o

When the memory owns a block, caches can contain only the RO copies of the block. In other words,
multiple copies may exist in the RO state and every processor having a copy (called a keeper of the copy)
can read (R(i), R(f)) the copy safely.
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The INV state is entered whenever a remote processor writes (W(f)) its local copy or the local processor
replaces (Z(7)) its own block copy. The RW state corresponds to only one cache copy existing in the entire
systemn owned by the local processor 7. Read (R(#)} and write (W{i)} can be safely performed in the RW state.
From either the RO state or the INV state, the cache block becomes uniquely owned when a local write (#(i))
takes place,

Other state transitions in Fig. 7.15b can be similarly figured out. Before a block is modified, ownership
for exclusive access must first be obtained by a read-only bus iransaction which is broadcast to all caches
and memory. If a modified block copy exists in a remote cache, memory must first be updated, the copy
invalidated, and ownership transferred to the requesting cache.

Write-once Protocol James Goodman (1983) proposed a cache coherence protocol for bus-based
multiprocessors. This scheme combines the advantages of both write-through and write-back invalidations.
In order to reduce bus traffic, the very first write of a cache block uses a write-through policy.

This will result in a consistent memory copy while all other cache copies are invalidated. After the first
write, shared memory is updated using a write-back policy. This scheme can be described by the four-state
transition graph shown in Fig. 7.16. The four cache states are defined below:

P-Read

Write-Inv/Read-tnv

Read-Inv

P-Write

P-Write
Solid lines: Command issued by local processor
Dashed lines: Commands issued by remote processors
via the system bus.
Fig. 716 Goodman's write-onice cache coherence protocol using the write invalidate policy on write-back
caches (Adapted from James Goodman 1983, reprinted from Stenstrom, IEEE Computer, june 1990)

* Valid: The cache block, which is consistent with the memory copy, has been read from shared memory
and has not been modified. _

» Invalid: The block is not found in the cache or s inconsistent with the memory copy.

* Reserved: Data has been written exactly once since being read from shared memeory. The cache copy
is consistent with the memory copy, which is the only other copy.
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« Dirty: The cache block has been modified (writfen) more than once, and the cache copy is the only one
in the system (thus inconsistent with all other copies).

To maintain consistency, the protocol requires two different sets of commands. The solid lines in
Fig. 7.16 correspond to access commands issued by a local processor labeled read-miss, write-hit, and write-
miss. Whenever a read-miss occurs, the valid state is entered.

The first write-hit leads to the reserved state. The second write-hit leads to the dirty state, and all future
write-hits stay in the dirty state. Whenever a write-miss occurs, the cache block enters the dirgy state.

The dashed lines correspond to invalidation commands issued by remote processors via the snoopy bus.
The read-invalidate command reads a block and invalidates all other copies. The write-invalidate command
invalidates all other copies of a block. The bus—read command corresponds to a normal memory read by a
remote processor via the bus

Cache Events and Actions The memory-access and invalidation commands trigger the following events
and actions:

* Read-miss: When a processor wants to read a block that is not in the cache, a read-miss occurs. A bus-
read operation will be initiated. If no dirty copy exists, then main memory has a consistent copy and
supplies a copy to the requesting cache. If a dirry copy does exist in a remote cache, that cache will
inhibit the main memory and send a copy to the requesting cache. In all cases, the cache copy will enter
the valid state after a read-miss.

» Write-hit: 1f the copy is in the dirty or reserved state, the write can be carried out locally and the
new state is dirty. If the new state is valid, a write-invalidate command is broadcast to all caches,
invalidating their copies. The shared memory is written through, and the resulting state is reserved
after this first write.

 Write-miss: When a processor fails to write in a local cache, the copy must come either from the main
memory or from a remote cache with a dirty block. This is accomplished by sending a read-invalidate
command which will invalidate all cache copies. The local copy i8 thus updated and ends-up in a dirty
state.

* Read-hit. Read-hits can always be performed in a local cache without causing a state transition or
using the snoopy bus for invalidation.

« Block Replacement: If a copy is dirty, it has to be written back to main memory by block replacement.
If the copy is clean (i.e., in either the valid, reserved, ot invalid state), no replacement will take place.

Goodman’s write-once protocol demands special bus lines to inhibit the main memory when the memory
copy is invalid, and a bus-read operation is needed after a read miss. Most standard buses cannot support this
inhibition operation.

The IEEE Futurebus+ proposed to include this special bus provision, Using a write-through policy after
the first write and using a write-back policy in all additional wrifes eliminates unnecessary invalidations.

Snoopy cache protocols are popular in bus-based multiprocessors because of their simplicity of
implementation. The write-invalidate policies were implemented on the Sequent Symmetry multiprocessor
and on the Alliant FX multiprocessor.

Besides the DEC Firefly multiprocessor, the Xerox Palo Alto Research Center implemented another write-
update protocol for its Dragen multiprocessor workstation. The Dragon protocol avoids updating memory
until replacement, in order to improve the efficiency of intercache transfers.
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Muitilevel Cache Coherence To maintain consistency among cache copies at various levels, Wilson
proposed an extension to the write-invalidate protocol used on a single bus. Consistency among cache copies
at the same level is maintained in the same way as described above. Consistency of caches at different levels
is illustrated in Fig. 7.3,

An invalidation must propagate vertically up and down in order to invalidate all copies in the shared
caches at level 2. Suppose processor P issues a write request. The write request propagates up to the highest
level and invalidates copies in Cyg, Cay, Cj¢, and Cyg, as shown by the arrows to all the shaded copies.

High-level caches such as Cy, keep track of dirty blocks beneath them. A subsequent read request issued
by P; will propagate up the hierarchy because no copies exist. When it reaches the top level, cache C,; issues
a flush request down to cache ('}, and the dirty copy is supplied to the private cache associated with processor
P5. Note that higher-level caches act as filters for consistency control. An invalidation command or a read
request will not propagate down to clusters that do not contain a copy of the corresp. :ding block. The cache
C,) acts in this manner.

Protocol Performance Issues The performance of any snoopy protocol depends heavily on the workload
patterns and implementation efficiency. The main motivation for using the snooping mechanism is to reduce
bus traffic, with a secondary goal of reducing the effective memory-access time. The block size is very
sensitive to cache performance in write-invalidate protocols, but not in write-update protocols.

For a uniprocessor system, bus traffic and memory-access time are mainly contributed by cache misses.
The miss ratio decreases when block size increases. However, as the block size increases to a data pollution
point, the miss ratio starts to increase. For larger caches, the data pollution point appears at a larger block size.

For a system requiring extensive process migration or synchronization, the write-invalidate protocol will
perform better. However, a cache miss can result for an invalidation initiated by another processor prior to the
cache access. Such invalidation misses may increase bus traffic and thus should be reduced.

Extensive simulation results have suggested that bus traffic in a multiprocessor may increase when the block
size increases. Write-invalidate also facilitates the implementation of synchronization primitives. Typically,
the average number of invalidated cache copies is rather small (one or two) in a small multiprocessor.

The write-update protocol requires a bus broadcast capability. This protecol also can avoid the ping-pong
effect on data shared between multiple caches. Reducing the sharing of data will lessen bus traffic in a write-
update multiprocessor. However, write—update cannot be used with long write bursts. Only through extensive
program (races (trace-driven simulation) can one reveal the cache behavior, hit ratio, bus traffic, and effective
memory-access time.

7.2.3 Directory-Based Protocols

A write-invalidate protocol may lead to heavy bus traffic caused by read-misses, resulting from the processor
updating a variable and other processors trying to read the same variable. On the other hand, the write-update
protocol may update data items in remote caches which will never be used by other processors. In fact, these
problems pose additional limitations in using buses to build large multiprocessors.

When a multistage or packet switched network is used to build a large multiprocessor with hundreds of
processors, the snoopy cache protocols must be modified to suit the network capabilities. Since broadcasting
is expensive to perform in such a network, consistency commands will be sent only to those caches that keep
a copy of the block. This leads to directory-based protocols for network-connected multiprocessors.
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Directory Structures In a multistage or packet switched network, cache coherence is supported by using
cache directories to store information on where copies of cache blocks reside. Various directory-based
protocols differ mainly in how the directory maintains information and what information it stores.

Tang (1976) proposed the first directory scheme, which used a central directory containing duplicates of
all cache directories. This central directory, providing all the information needed to enforce consistency, is
usually very large and must be associatively searched, like the individual cache directories. Contention and
long search times are two drawbacks in using a central directory for a large multiprocessor.

A distributed-directory scheme was proposed by Censier and Feautrier (1978). Each memory module
maintains a separate directory which records the state and presence information for each memory block. The
state information is local, but the presence information indicates which caches have a copy of the block.

In Fig. 7.17, a read-miss (thin lines) in cache 2 results in a request sent to the memory module. The
memoty controller retransmits the request to the dirty copy in cache 1. This cache writes back its copy. The
memory module can supply a copy to the requesting cache. In the case of a write-hit at cache 1 (bold lines),
a command is sent to the memory controller, which sends invalidations to all caches (cache 2) marked in the
presence vector residing in the directory D,

| (o] L [
] I
T i

L —— Interconnection Network ]
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|- C1 | C2 I [ X N ]
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Fig.7.17 Basic concept of a directory-based cache coherence scheme {Courtesy of Censier and Feautrier, [EEE
Trans. Computers, Dec. 1978)

A cache-coherence protocol that does not use broadcasts must store the locations of all cached copies of
each block of shared data. This list of cached locations, whether centralized or distributed, is called a cache
directory. A directory entry for each block of data contains a number of pointers to specify the locations of
copies of the block. Each directory entry also contains a dirty bit to specify whether a particular cache has
permission to write the associated block of data.

Different types of directory protocols fall under three primary categories: full map directories, limited
directories, and chained directories. Full-map directories store enough data associated with each block in
global memory so that every cache in the system can simultaneously store a copy of any block of data. That
is, each directory entry contains N pointers, where N is the number of processors in the system.

Limited directoties differ from full-map directories in that they have a fixed number of pointers per entry,
regardless of the system size. Chained directories emulate the full-map schemes by distributing the directory
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among the caches. The following descriptions of the three classes of cache directories are based on the
original classification by Chaiken, Fields, Kwihara, and Agarwal (1 990):

Full-Map Directories The full-map protocol implements directory entries with one bit per processor and a
dirty bit. Each bit represents the status of the block in the corresponding processor’s cache (present or absent),
If the dirty bit is set, then one and only one processor’s bit is set and that processor can write into the block.

A cache maintains two bits of state per block. One bit indicates whether a block is valid, and the other
indicates whether a valid block may be written. The cache coherence protocol must keep the state bits in the
memory directory and those in the cache consistent.

Figure 7.18a illustrates three different states of a full-map directory. In the first state, location X is missing
in all of the caches in the system. The second state results from three caches (C1, C2, and (3) requesting
copies of location X. Three pointers (processor bits) are set in the entry to indicate the caches that have copies
of the block of data. In the first two states, the dirty bit on the left side of the directory entry is set to clean (C),
indicating that no processor has permission to write to the block of data. The third state results from cache
C3 requesting write permission for the block. In the final state, the dirty bit is set to dirty (D), and there is a
single pointer to the block of data in cache C3.

Let us examine the transition from the second state tg the third state in more detail. Once processor P3
issues the write to cache C3, the following events will take place:

(1) Cache C3 detects that the block containing location X is valid but that the processor does not have
permission to write to the block, indicated by the block’s write-permission bit in the cache.

(2) Cache C3 issues a write request to the memory module containing location X and stalls processor P3.

(3) The memory module issues invalidate requests to caches Cl and C2,

{4) Caches Cl and C2 receive the invalidate requests, sct the appropriate bit to indicate that the block
containing location X is invalid, and send acknowledgments back to the memory module.

{5) The metory module receives the acknowledgments, sets the dirty bit, clears the pointers to caches C]
and C2, and sends write permission to cache C3.

(6) Cache C3 receives the write permission message, updates the state in the cache, and reactivates
processor P3.

The memory module waits to receive the acknowledgments before allowing processor P3 to complete
its write transaction. By waiting for acknowledgments, the protocol guarantees that the memory system
ensures sequential consistency. The full-map protocol provides a useful upper bound for the performance of
centralized directory-based cache coherence. However, it is not scalable due to excessive memory overhead.

Because the size of the directory entry associated with each block of memory is propertional to the number
of processors, the memory consumed by the directory is proportional to the size of memoty ((N) multiplied
by the size of the directory O(N). Thus, the total memory overhead scales as the square of the number of
processors O(N?).

Limited Directories Limited directory protocols are designed to solve the directory size problem.
Restricting the number of simultaneously cached copies of any particular block of data limits the growth of
the directory to a constant factor,

A directory protocol can be classified as Dir, X using the notation from Agarwal et al (1 988). The symbol
 stands for the number of pointers, and X is NB for a scheme with no broadeast. A full-map scheme without
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broadcast is represented as Diry NB. A limited directory protocol that uses i < N pointers is denoted Dir; NB.
The litited directory protocol is similar to the full-map directory, except in the case when more than i caches

request read copies of a particular block of data.

Shared memory Shared memory
X:[C i ]--o ]Data X:|C ]3[ ] E‘" Data
Cache Cache Cache Cachg Cache Caghe
X: [Data] ; | X: ***! X: [Datal
P1 (P2) P3 (P1) (P2) P3
Read X Read X Read X Write X
Shared memory
x: BT L]
Cache Cache Chche
vl x
GO G)) r3)

(a) Three states of a full-map directory

Shared memaory

x:[C[, 1 \[pata)

Shared memory

Cache Cache Cache Cache Cache Cache
. [oaie]| | x [Data] [ x o] +++| o]
& (p2) (P3) (P1) (P2) (P3)

Read X
{b) Eviction in a limited directory
Shared memory Shared memory
x
Cachg Cache Cache Cache Cache Cache
x:[Data[CT] . x:[Data[CT x: o _
P1 (P2) (P3) (P1) {P2) {P3)
Read X Write X
(¢) The chained directory

Fig.7.18 Three types of cache directory protocols (Courtesy of Chaiken et al,,IEEE Computer, June 1990)
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Figure 7.18b shows the situation when three caches request read copies in a memory system with a
Diry NB protocol. In this case, we can view the two-pointer directory as a two-way set-associative cache of
pointers to shared copies. When cache C3 requests a copy of location X, the memory module must invalidate
the copy in either cache Cl or cache C2. This process of pointer replacement is called eviction. Since the
directory acts as a set-associative cache, it must have a pointer replacement policy.

If the multiprocessor exhibits processor locality in the sense that in any given interval of time only a small
subset of all the processors access a given memory word, then a limited directory is sufficient to capture this
small worker set of processors.

Directory pointers in a Dir; N B protocol encode binary processor identifiers, so each pointer requires log,
N bits of memory, where A is the number of processors in the system. Given the same assumptions as for the
full-map protocol, the memory overhead of limited directory schemes grows as O(N log, N).

These protocols are considered scalable with respect to memory overhead because the resource required to
implement them grows approximately linearly with the number of processors in the system. Dir; B protocols
allow more than i copies of each block of data to exist, but they resort to a broadcast mechanism when more
than i cached copies of a block need to be invalidated. However, point-to-point interconnection networks do
not provide an efficient systemwide broadcast capability. In such networks, it is difficult to determine the
completion of a broadcast to ensure sequential consistency.

Chained Directories Chained directories realize the scalability of limited directories without restricting
the number of shared copies of data blocks. This type of cache coherence scheme is called a chained scheme
because it keeps track of shared copies of data by maintaining a chain of directory pointers.

The simpler of the two schemes implements a singly linked chain, which is best described by example
(Fig. 7.18c). Suppose there are no shared copies of location X, If processor P1 reads location X, the memory
sends a copy to cache C1, along with a chain termination (CT) pointer. The memory also keeps a pointer to
cache C1. Subsequently, when processor P2 reads location X, the memory sends a copy to cache C2, along
with the pointer to cache C1. The memory then keeps a pointer to cache C2.

By repeating the above step, all of the caches can cache a copy of the location X. If processor P3 writes
to location X, it is necessary to send a data invalidation message down the chain. To ensure sequential
consistency, the memory module denies processor P3 write permission until the processor with the chain
termination pointer acknowledges the invalidation of the chain, Perhaps this scheme should be called a gossip
protocol (as opposed to a snoopy protocol) because information is passed from individual to individual rather
than being spread by covert observation.

The possibility of cache block replacement complicates chained-directory protocols.

Suppose that caches C1 through CN all have copies of location X and that location X and location Y map
to the same (direct-mapped) cache line. If processor P; reads location Y, it must first evict location X from its
cache with the following possibilities:

(1) Send a message down the chain to cache C;_; witha pointer to cache C,.; and splice C; out of the chain,
or
(2) Invalidate location X in cache Cj., through cache Cy,.

The second scheme can be implemented by a less complex protocol than the first. In either case, sequential
consistency is maintained by locking the memory location while invalidations are in progress. Another
solution to the replacement problem is to use a doubly linked chain. This scheme maintains forward and
backward chain pointers for each cached copy so that the protocol does not have to traverse the chain when
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thete is a cache replacement. The doubly linked directory optimizes the replacement condition at the cost of
a larger average message block size (due to the transmission of extra directory pointers), twice the pointer
memory in the caches, and a more complex coherence protocol.

Although the chained protocols are more complex than the limjtgd directory protocols, they are still
scalable in terms of the amount of memory used for the directories. The pointer sizes grow as the logarithm
of the number of processors, and the number of pointers per cache or memory block is independent of the
number of processors.

Cache Design Alternatives The relative merits of physical address caches and virtual address caches
have to be judged based on the access time, the aliasing problem, the flushing problem, OS kernel overhead,
special tagging at the process level, and cost/performance considerations. Beyond the use of private caches,
three design altematives are suggested below.

Each of the design alternatives has its own advantages and shortcomings. There exists insufficient
evidence to determine whether any of the alternatives is always better or worse than the use of private caches.
More research and trace data are needed to apply these cache architectures in designing high-performance
multiprocessors.

Shared Caches An alternative approach to maintaining cache coherence is to completely eliminate the
problem by using shared caches attached to shared-memory modules. No private caches are allowed in this
case. This approach will reduce the main memory access time but contributes very little to reducing the
overall memory-access time and to resolving access conflicts.

Shared caches can be built as second-level caches. Sometimes, one can make the second-level caches
partially shared by different clusters of processors. Various cache architectures are possible if private and
shared caches are both used in a memory hierarchy. The use of shared cache alone may be against the
scalability of the entire system. Tradeoffs between using private caches, cathes shared by multiprocessor
clusters, and shared main memory are interesting topics for further research.

Noncacheable Data  Another approach is not to cache shared writable data. Shared data are noncacheable,
and only instructions or private data are cacheable in local caches. Shared data include locks, process queucs,
and any other data structures protected by critical sections.

The compiler must tag data as either cacheable or noncacheable. Special hardware tagging must be used
to distinguish them. Cache systems with cacheable and noncacheable blocks demand more support from
hardware and compilers. :

Cache Flushing A third approach is to use cache flushing every time a synchronization primitive is
executed. This may work well with transaction processing multiprocessor systems. Cache flushes are slow
unless special hardware is used. This approach does not solve I/O and process migration problems.

Flushing can be made very selective by the compiler in order to increase efficiency. Cache flushing at
synchronization, I/, and process migration may be carried out unconditionally or selectively. Cache flushing
is more often used with virtual address caches.

7.2.4 Hardware Synchronization Mechanisms

Synchronization is a special form of communication in which control information is exchanged, instead
of data, between communicating processes tesiding in the same or different processors. Synchronization
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enforces correct sequencing of processors and ensures mutually exclusive access to shared writable data,
Synchronization can be implemented in software, firmware, and hardware through controlled sharing of data
and contrel information in memory.

Multiprocessor systems use hardware mechanisms to implement low-level or primitive synchronization
operations, ot use software (operating system) level synchronization mechanisms such as semaphores
or monitors. Only hardware synchronization mechanisms are studied below. Software approaches to
synchronization will be treated in Chapter 10.

Atomic Operations Most multiprocessors are equipped with hardware mechanisms for enforcing atomic
operations such as memory read, write, or read-modify-write operations which can be used to implement
some synchronization primitives. Besides atomic memory operations, some interprocessor interrupts can be
used for synchronization purposes. For example, the synchronization primitives, Test&Set (Jock) and Reset
(lock), are defined below:

Test&Set  (lock)

temp « lock, lock « 1,

return femp (7.4)
Reset (lock)

lock <0

Test&Set is implemented with atomic read-modify-write memory operations. To synchronize concurrent
processes, the software may repeat Test&Set until the returned value (remp) becomes 0. This synchronization
primitive may tie up some bus cycles while a processor enters busy-waiting on the spin lock. To avoid
spinning, interprocessor interrupts can be used.

A lock tied to an interrupt is called a suspend lock. Using such a lock, a process does not relinquish the
processor while it is waiting. Whenever the process fails to open the lock, it records its status and disables
all interrupts aiming at the lock. When the lock is open, it signals all waiting processors through an interrupt.
A similar primitive, Compare& Swap, was implemented in IBM 370 mainframes.

Concurrent processes residing in different processors can be synchronized using barriers. A barrier can
be implemented by a shared-memory word which keeps counting the number of processes reaching the
barrier. After all processes have updated the barrier counter, the synchronization point has been reached. No
processor can execute beyond the barrier until the synchronization process is complete.

Wired Barrier Synchronization A wired-NOR logic is shown in Fig. 7.19 for implementing a barrier
mechanism for fast synchronization. Each processor uses a dedicated control vector X = (X, X5, ..., X} and
accesses a common monitor vector ¥ = (¥, 1, ...... . ¥u) in shared memory, where m corresponds to the
barrier lines used.

The number of barrier lines needed for synchronization depends on the multiprogramming degree and the
size of the multiprocessor system. Each control bit X} is connected to the base (input) of a probing transistor.
The monitor bit ¥; checks the collector voltage (output) of the transistor.

Each barrier line is wired-NOR to # transistors from » processors, Whenever bit .Y, is raised 1o high (1),
the corresponding transistor is closed, pulling down (0) the level of barrier line i. The wired-NOR connection
implies that line / will be high (1) only if control bits X; from all processors are low ().
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This demonstrates the ability to use the control bit X; to signal the completion of a process on precessor i.
The bit X; is set to 1 when a process is initiated and reset to 0 when the process finishes its execution.

When all processes finish their jobs, the X; bits from the participating processors are all set to 0; and the
barrier line is then raised to high (1), signaling the synchronization barrier has been crossed. This timing is
watched by all processors through snooping on the ¥; bits. Thus only one barrier line is needed to monitor the
initiation and completion of a single synchronization involving many concurrent processes.
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(a) Barrier lines and interface logic

Step 1: Forking (use of one barrier line)

Processor 1 Processor2 Processor 3 Processor 4
Line 1

x [ [1
vy [ @ [ @

Step 2; Process 1 and Process 3 reach the synchronization point

x [@ [ o
v [ o o o

Process 1 Process 2 Process 3 Process 4
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(b) Synchronization steps

Fig. 7.19 - The synchronization of four independent processes on four processors using one wired-NOR barrier
Jline (Adapted from Hwang and Shang, Proc. int. Conf. Parallef Processing, 1991)

Multiple barrier lines can be used simultaneously to monitor several synchromization points.
Figure 7.19 shows the synchronization of four processes residing on four processors using one barrier line.
Note that other barrier lines can be used to synchronize other processes at the same time in a multiprogrammed
multiprocessor environment.
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If the synchronization pattern is predicted after compile time, then one can follow the precedence graph of a
partially ordered set of processes to perform multiple synchronization as demonstrated in Fig. 7.20.

Example 7.2 Wired barrier synchronization of five partially
ordered processes (Hwang and Shang, 1991)
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Fig-%:20 The synchronization of five partially ordered processes using wired-NOR barrier lines (Adapted from
- Hwang and Shang, Proc. Int; Conf. Porallel Processing, 1991)
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Here five processes (P, Py, ..., Ps) are synchronized by snooping on five barrier lines corresponding
to five synchronization points labeled a, b, ¢, d, e. At step 0 the control vectors need to be initialized. All
five processes are synchronized at point a. The crossing of barrier a is signaled by monitor bit ¥y, which is
observable by all processors. '

Barriers b and ¢ can be monitored simultaneously using two lines as shown in steps 2@ and 2b. Only four
steps are needed to complete the entire process. Note that only one copy of the monitor vector Y is maintained
in the shared memory. The bus interface logic of each processor module has a copy of ¥ for local monitoring
purposes as shown in Fig. 7.20c.

Separate control vectors are used in local processots. The above dynamic barrier synchronization is possible
only if the synchronization pattern is predicted at compile time and process preemption is not allowed. One
can also use the barrier wires along with counting semaphores in memory to support multiprogrammed
multiprocessors in which preemption is allowed.

THREE GENERATIONS OF MULTICOM_?UTERS

Three early generations of multicomputers are reviewed in this section, which have contributed
to the development of modern systems. Experiences from Intel, nCUBE, MIT, and Caltech
are examined. In particular, we present the Intel Paragon system in some detail. The generic muiticomputer
model shown in Fig. 1.9 and various network topologies presented in Section 2.3 form the background
needed for reading this section. Further discussion on related topics and current advances can be found in
Chapter 13.

7.3.1 Design Choices in the Past

Before we examine these developments, let us identify the major design choices made so far in building
multicomputers, as compared with the development of other types of parallel computers. As illustrated in
Fig. 7.21, the choices made involve the selection of processors, memory structure, interconnection schemes,
and control strategy.

Design Choices In selecting a processor technology, a multicomputer designer typically chooses low-cost
so-called commodity processors as building blocks. In fact, the majority of parallel computers have been
built with standard off-the-shelf processors. Even the custom-designed processors used in the AMT DAP,
nCUBE, TMC/CM-2, and IBM RP3 computers were 10w-cost processors.

The next step was to choose distributed memory for multicomputers rather than using shared memory
which would limit the scalability. Each processor has its own local memory to address. Scalability becomes
more feasible without shared resources. With distributed memory, a new programming model and tools are
needed for multicomputers.

Multicomputers have message-passing, point-to-point, direct networks as an interconnection scheme
rather than the address-switching networks used in NUMA multiprocessors like the IBM RP3 and BBN
Butterfly. A message-passing network routes messages between nodes. Any node can send a message to
another. Send/receive semantics must be incorporated to guarantee consistent programming with or without
uniform messaging speeds.
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Fig.7.21 Design choices made in the past for developing message-passing multicomputers compared to those
. made for other parallel computers (Courtesy of Intel Scientific Computers, 1988)

In selecting a control strategy, designers of multicomputers choose the asynchronous MIMD, MPMD,
and SPMD operations, rather than the SIMD lockstep operations as in the CM-2 and DAP. Even though
both support massive parallelism, the SIMD approach offers little or no opportunity to utilize existing
multiprocessor code because radical changes must be made in the programming style.

On the other hand, multicomputers allow the use of existing software with minor changes from that
developed for multiprocessors or for other types of parallel computers.

First Generation Caltech’s Cosmic Cube (Seitz, 1983) was the first of the first generation multicomputers.
The Intel iPSC/1, Ametek S/14, and nCUBE/10 were various evolutions of the original Cosmic Cube.

For exampie, the iPSC/1 used i80286 processors with 512 Kbytes of local memory per node. Each node
was implemented on a single printed-circuit board with eight I/O ports. Seven I/O ports were used to form
a seven-dimensional hypercube. The eighth port was used for an Ethernet connection from each node to the

host.
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Table 7.1 summarizes the important parameters used in designing the early three generations of
multicomputers. The communication latency (for a 100-byte message) was rather long in the early 1980s.
The 3-to-1 ratio between remote and local communication latencies was caused by the use of a store-and-
forward routing scheme where the latency is proportional to the number of hops between two communicating
nodes.

Table 7.1 Three Early Generations of Multicomputer Development

Generation L st Second . Third
Years 198387 1988-92 199397
Typical node R = '
MIPS 10 Lo 100
Mflops scalar 2 A
Mflops vector 40 _ T 200
Memory (Mbytes) 4 L 32
Typical system SRR

N (nodes) 256 ST 1024
MIPS 2560 0K
Mflops scalar 512 L e
Mflops vector 10K e - 200K
Memory (Mbytes) K LK
Communication latency SR
(100-byte message)

Neighbor (microseconds) 5 - 0.5
Nonlocal (microseconds) 5 0.5

{Modified from Athas and Seitz, “Multicomputers: Message-Passing Concurrent Computers”, IEEE Computer, August 1988).

Vector hardware was added on a separate board attached to each processing node board. Or one could use
the second board to hold extended local memory. The host used in the iPSC/1 was an Intel 310 microprocessor.
All /O must be done through the host.

7.3.2 Present and Future Development

The second and third generations of multicomputers are introduced below. The Intel Paragon is presented as
a case study. More recent advances in high-performance computing are discussed in Chapter 13.

The Second Generation A major improvement of the second generation included the use of better
processors, such as i386 in the iPSC/2 and i860 in the iPSC/860 and in the Delta. The nCUBE/2 implemented
64 custom-designed VLSI processors on a single PC board. The memory per node was also increased to 10
times that of the first generation.

Most importantly, hardware-supported routing, such as wormhole routing, reduced the communication
latency significantly from 6000 us to less than 5 ys. In fact, the latency for remote and local communications
became almost the same, independent of the number of hops between any two nodes.
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The architecture of a typical second-generation multicomputer is shown in Fig. 7.22. This corresponds to
a l6-node mesh-connected architecture. Mesh routing chips (MRCs) are used to establish the four-neighbor
mesh network. All the mesh communication channels and MRCs are built on a backplane.

=,

File system

S

Communication
node node node node
{ MRC MRC MRC

node node

Host
Computer] MRC MRC

——— Disptay Generator
Ethernet

Legends: MRC = Mesh routing chip

Fig.7.22 The architecture of a second-generation mulucempucer using a hardware-roited mesh in‘mm:tm
{Courtesy of Charles Seitz; reprinted with permission from Cmcwrm,&:ﬂﬂmm” V!.Sf M’
Paralle Computation, edited by Suaya and Birtwistle, Morgan Kaufmann Publishers, m

Each node is implemented on a PC board plugged into the backplane at the proper MRC position. All 'O
devices, graphics, and the host are connected to the periphery (boundary} of the mesh. The Intel Delta system
had such a mesh architecture,

Another representative system was the nCUBE/2 which implemented a hypercube with up to 8192 nodes
with a total of 512 Gbytes of distributed memory. Note that some parameters in Table 7.1 have been updated
from the conservative estimates made by Atlas and Seitz in 1988. Typical figures representative of current
systems can be found in Chapter 13.

The SuperNode 1000 was a Transputer-based muiticomputer produced by Parsystem Ltd., England.
Another second-generation system was Ametek’s Series 2010, made with 25-MHz M68020 processors using
a mesh-routed architecture with 225-Mbytes/s channels.

The Third Generation These designs laid the foundation for the current generation of multicomputers,
Caltech had the Mosaic C project designed to use VLSI-implemented nodes, each containing a 14-MIPS
processor, 20-Mbytes/s routing channels, and 16 Kbytes of RAM integrated on a single chip.
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The full size of the Mosaic was targeted to have a total of 16,384 nodes organized in a three-dimensional
mesh architecture. MIT built the J-machine which it planned to extend to a 65K-node multicomputer with
VLSI nodes interconnected by a three-dimensional mesh network. We will study the J-machine experience
in Section 9.3.2,

The J-machine planned to usc message-driven processors to reduce the message handling overhead to less
than 1 us. Each processor chip would contain a 512-Kbit DRAM, a 32-bit processor, a floating-point unit,
and a communication controller. The communication latency in systems was later reduced to a few ns using
high-speed links and sophisticated comimunication protocols.

The significant reduction of overhead in communication and synchronization would permit the cxecution
of much shorter tasks with grain sizes of 5 us per processor in the J-machine, as opposed to executing tasks
of 100 us in the iPSc/1.This implies that concurrency may increase from 10° in the iPSc/1 to 10° in the
J-machine.

The first two generations of multicomputers have been called medium-grain systems. With a significant
reduction in communication latency, the third generation systems may be called fine-grain multicomputers.

Research is also underway to combine the private virtual address spaces distributed over the nodes into
a globally shared virtual memory in MPP multicomputers. Instead of page-oriented message passing, the
fine-grain system may require block-level cache communications. This fine-grain and shared virtual memory
approach can in theory combine the relative merits of multiprocessors and multicomputers in a heterogencous
processing (HP) environment,

7.3.3 The Intel Paragon System

in the 1980s, hypercube multicomputers were made with homogeneous nodes because all I/O functions were
given to the host. This limited the 1/0 bandwidth, and thus these computers could not be used in solving
large-scale problems with efficiency or high throughput. The Intel Paragon was designed to overcome this
difficulty. The usage model turned the multicomputer into an applications server with multiuser access in a
network environment.

Ever since the introduction of the iPSC/2 CFS, parallel I/O has been possible with dedicated disk nodes in
addition to the computing nodes. The iPSC/860 further pushed the idea of using heterogeneous node types.
The Paragon system went further by making it a host-free multicomputer. We explain below the various node
types used in the Paragon and present the hardware router design.

The architecture of the Intel Paragon system is shown in Fig. 7.23. This system was driven by applications
which require solving general sparse matrix problems, performing parallel data manipulation, or making
scientific predictions through simulation modeling. :

These difficult problems demand heterogeneous node types for numeric, service, 'O, and network
gateways, as demonstrated in the schematic diagram of the Paragon system. The mesh architecture of the
Paragon was divided into three sections.

The middle section, called the compute partition, is a mesh of numeric nodes implemented with Intel
i860XP microprocessors. This array had an aggregate of 8.8 Gbytes of distributed memory.

The system had a potential performance of 5 to 300 Gfiops collectively. This mesh architecture eliminated
the power-of-2 upgrade requirement of a hypercube architecture. All I/O was handled by the two disk 'O
columns at the left and right edges of the mesh. Each column was a 16 x | array of 16 disk nodes. The
aggregate [/O bandwidth reached 48 Mbytes/s with a total of 27.4 Gbytes per disk IO column.
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The processors used in the 10O columns were Intel i386’s which supervised the massive data transfers
between the disk arrays and the computational array during /O operations. The system 1/0 column was made
up of six service nodes. two tape nodes, two Ethernet nodes, and a HIPP! node. The service nodes were used
for system diagnosis and handling of interrupts. The tape nodes were used for backup storage.

The Ethernet and HIPPI nodes were used for fast gateway connections with the outside world. Collectively,
a 17,000-MIPS performance was claimed possible on the 570 numeric and disk 1/0 nodes involved in program
execution. The system was designed to run iPSC/860-compatible software.

Node and Router Architecture The Paragon was designed as an experimental system. One unit was
built and delivered to Caltech in May 1991 for research use by a consortium of 13 national laboratories and
universities. The typical node architecture is shown in Fig. 7.24.

Node Floating Other
Board Processor(s) point unit(s) unit(s)
! Bus
Local Externat
Memory 110
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Fig.7.24 Node architecture of the Paragon multicomputer
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Each node was on a separate board. For numeric nodes, the processor and floating-point units were on
the same 860 chip. The local memory took up most of the board space. The external /O interface was
implemented only on the boundary nodes with a computational array. The message I/0 interface was required
for message passing between local nodes and the mesh network. The mesh-connected router is shown in Fig.
7.25.
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Fig.7.25 The structure of a mesh-connected router with four pairs of YO channels connected to neighboring

Each router had 10 /O ports, 5 for input and 5 for output. Four pairs of I/O channels were used for mesh
connection to the four neighbors at the north, south, east, and west nodes.

Flow control digits (flits) buffers were used at the end of input channels to hold the incoming flits. The
concept of flits will be clarified in the next section. Besides four pairs of external channels, a fifth pair was
used for internal connection between the router and the local node. A 5 X 5 crossbar switch was used to
establish a connection between any input channel and any output channel.

The functions of the hardware router included pipelined message routing at the flit level and resolving
buffer or channel deadlock situations to achieve deadlock-free routing. In the next section, we will explain
various routing mechanisms and deadlock avoidance schemes.

All the /O channels shown in Figs. 7.24 and 7.25 are physical channels which allow only one message
(flit) to pass at a time. Through time-sharing, one can also implement virtual channels to multiplex the use of
physical channels as described in the next section.

Message passing in a multicomputer network demands special hardware and software
support. In this section, we study the storc-and-forward and wormhole routing schemes and
analyze their communication latencies. We introduce the concept of virtual channels. Deadlock situations in
a message-passing network are examined. We show how to avoid deadlocks using virtual channels.
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Both deterministic and adaptive routing algorithms are presented for achieving deadlock-free message
routing. We first study deterministic dimension-order routing schemes such as E-cube routing for hypercubes
and X-Y routing for two-dimensional meshes. Then we discuss adaptive routing using virtual channels or
virtual subnets. Besides one-to-one unicast routing, we will consider one-to-many multicast and one-to-all
broadcast operations using virtual subnets and greedy routing algorithms.

7.4.1 Message-Routing Schemes

Message formats are introduced below. Refined formats led to the improvement from store-and-forward to
wormheole routing in two generations of multicomputers. A handshaking protocol is described for asynchronous
pipelining of successive routers along a communication path, Finally, latency analysis is conducted to show
the time difference between the two routing schemes presented.

Message Formats Information units used in message routing are specified in Fig. 7.26. A message is the
logical unit for internode communication. It is often assembled from an arbitrary number of fixed-length
packets, thus it may have a variable length.

Message | I l | l [

Packet| | | [ | [ | [ |

R: Routing information
S: Sequence Number
D: Data only flits

Fig.7.26  Theformatofméssigh, packets and its (controi low dighsyus

A packet is the basic unit containing the destination address for routing purposes. Because different
packets may arrive at the destination asynchronously, a sequence number is needed in each packet to allow
reassembly of the message transmitted.

A packet can be further divided into a number of fixed-length flits (low control digits). Routing information
(destination) and sequence number occupy the header flits. The remaining flits are the data elements of a
packet.

In multicomputers with store-and-forward routing, packets are the smallest unit of information
transmission. In wormhole-routed networks, packets are further subdivided into flits. The flit length is often
affected by the network size.

The packet length is determined by the routing scheme and network implementation. Typical packet
lengths range from 64 to 512 bits. The sequence number may occupy one to two flits depending on the
message length. Other factors affecting the choice of packet and flit sizes include channel bandwidth, router
design, network traffic intensity, etc.

Store-and-Forward Routing Packets are the basic unit of information flow in a store-and-forward network.
The concept is illustrated in Fig. 7.27a. Each node is required to use a packet buffer. A packet is transmitted
from a source node to a destination node through a sequence of intermediate nodes.
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When a packet reaches an intermediate node, it is first stored in the buffer. Then it is forwarded to the next
node if the desired output channel and a packet buffer in the receiving node are both available.

The latency in store-and-forward networks is directly proportional to the distance (the number of hops)
between the source and the destination. This routing scheme was implemented in the first generation of
multicomputers.

Wormhole Routing By subdividing the packet into smaller flits, latter generations of multicomputers
implement the wormhole routing scheme, as illustrated in Fig. 7.27b. Flit buffers are used in the hardware
routers attached to nodes. The transmission from the source node to the destination node is done through a
sequence of routers.

Source Node Destination Node
{ I L N N ]
| Packet buffer | [

Intermediate Nodes

I ] f 1 | 1 | L
1 | L f 1 - | S

(a) Store-and-forward routing using packet buffers in successive nodes

Source Node Destination Node
[ il hyffe

']f‘j i cene N
Intermediate Nodes

E L} L] ]

(b) Wormhole routing using flit buffers in successive routers

Fig.7.27 Store-and-forward routing and wormhole routing (Courtesy of Lionel Ni, 1991)

All the flits in the same packet are transmitted in order as inseparable companions in a pipelined fashion.
The packet can be visualized as a railroad train with an engine car (the header flit) towing a long sequence
of box cars (data flits).

Only the header flit knows where the train (packet) is going. All the data flits (box cars) must follow the
header flit. Different packets can be interleaved during transmission. However, the flits from different packets
cannot be mixed up. Otherwise they may be towed to the wrong destinations.

We prove below that wormhole routing has a latency almost independent of the distance between the
source and the destination.

Asynchronous Pipelining The pipelining of successive flits in a packet is done asynchronously using a
handshaking protocol as shown in Fig. 7.28. Along the path, a 1-bit ready/request (R/A) line is used between
adjacent routers.

When the receiving router (D) is ready (Fig. 7.28a) to receive a flit (i.e. the flit buffer is available}, it pulls
the R/A line low. When the sending router (S) is ready (Fig. 7.28b), it raises the line high and transmits flit /
through the channel.

While the flit is being received by D (Fig. 7.28¢), the R/A line is kept high. After flit / is removed from
D’s buffer (i.e. is transmitted to the next node) (Fig. 7.28d), the cycle repeats itself for the transmission of the
next flit i + 1 until the entire packet is transmitted.
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Channel

(a) D is ready to receive a flit

RIA {high)

— 0 —— [

U= O F—— 0=

flit / v

(b} S is ready to send fiit/

R/A {low)

{c) Flit i is received by D

) o /0=

(d) Flit iis removed from D's buffer and flit/ + 1
arrives at S's buffer

Fig.7.28 Handshaking protocol between two wormhole routers (Courtesy of Lionel Ni, 1991)

Asynchronous pipelining can be very efficient, and the clock used can be faster than that used in a
synchronous pipeline. However, the pipeline can be stalled if flit buffers or successive channels along the
path are not available during certain cycles. Should that happen, the packet can be buffered, blocked, dragged,
or detoured. We will discuss these flow control methods in Section 7.4.3.

Latency Analysis A time comparison between store-and-forward and wormhole-routed networks is given
in Fig. 7.29. Let L be the packet length (in bits), #”the channel bandwidth (in bits/s), D the distance (number
of nodes traversed minus 1), and F the flit [ength (in bits).

]

- TsF -

l— | AN —
Nip [ ][ Dat

_Dgta
N2 ALLTTT] T
header  Packet b
N3 ITTT] I
N4 LTI
+» Time
{a) Store-and-forward routing

'y

e——— Ty ——»

fe— LW —=
NLE LT —
N2| [T 11711 ,

D
Nal [LETTT]
Na EREEE
» Time

(a) Wormhole routing

Fig. 7.29 Time comparison between the two routing techniques
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The communication latency Ty for a store-and-forward network is expressed by

L
Tor= — (D+1 7.5
SFT ( ) (7.5)
The latency Ty for a wormhole-routed network is expressed by
L F
Topy= —+—xD 7.6
w= ot (7.6)

Equation 7.5 implies that Ty is directly proportional to D. In Eq. 7.6, Tyy = LIW if L >> F. Thus the
distance D has a negligible effect on the routing latency.

We have ignored the network startup latency and block time due to resource shortage (such as channels
being busy or buffers being full, etc.) The channel propagation delay has also been ignored because it is much
smaller than the terms in gz or Tyy.

According to the estimate given in Table 7.1, a typical first generation value of Tsr is between 2000 and
6000 ps, while a typical value of Ty is S gs or less. Current systems employ much faster processors, data
links and routers. Both the latency figures above would therefore be smaller, but wormhole routing would
still have much lower latency than packet store-and-forward routing.

7.4.2 Deadlock and Virtual Channels

The communication channels between nodes in a wormhole-routed multicomputer network are actually
shared by many possible source and destination pairs. The sharing of a physical channel leads to the concept
of virtual channels.

We introduce below the concept and explain its applications in avoiding deadlocks in this section and in
facilitating network partitioning for multicasting in Section 7.4.4.

Virtual Channels A virtual channel is a logical link between two nodes. It is formed by a flit buffer in
the source node, a physical channel between them, and a flit buffer in the receiver node. Figure 7.30 shows
the concept of four virtual channels sharing a
single physical channel,

-—l-D _p

Four flit buffers are used at the source node
and receiver node, respectively. One source
buffer is paired with one receiver buffer to form — A
a virtual channel when the physical channel is
allocated for the pair.

3

‘;D-—b

Physical
In other words, the physical channel is time- Channel
: . —> » B —
shared by all the virtual channels. Besides the
buffers and channel involved, some channel
states must be identified with different virtual
channels. The source buffers hold flits awaiting 0 0]
use of the channel. The receiver buffers Fiit buffers in Flit buffers in
hold flits just transmitted over the channel. source node destination node

Four virtual channels sharing a physical channel

The channel (wires or fibers) provides a Fig.7.30
: * with time multiplexing on a flit-by-flit basis

communication medium between them.
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Comparing the setup in Fig. 7.30 with that in Fig. 7.28, the difference lies in the added buffers at both
ends. The sharing of a physical channel by a set of virtual channels is conducted by time-multiplexing on a
flit-by-flit basis.

b)

As illustrated in Fig. 7.31, two types of deadlock situations are caused by a circular wait at buffers or channels,
A buffer deadlock is shown in Fig. 7.31a for a store-and-forward network. A circular wait situation results
from four packets occupying four buffers in four nodes. Unless one packet is discarded or misrouted, the
deadlock cannot be broken. In Fig. 7.31b, a channel deadiock results from four messages being simultaneously
transmitted along four channels in a mesh-connected network using wormhole routing,

Example 7.3 The deadlock situations caused by circular
waits at buffers or at channels

Packet Buffer Packet Buffer
- D|D|D|D|D = cicic|c|c
Node A Node D
Node B Node C
Packet Buffer Packet Buffer
AlA|A|A|A B!B|B|B|B

{a) Buffer deadiock among four nodes with store-and-forward routing

Message 3
Router A Node A ode D
— ]
L
Message 4 [‘J‘ | E] | Router D
e Je m3[:]
m4 D m2 I:I 1
Node B ode C
Router B H_w_l ”"1[] ]
g Message 2
Flit buffer Message 1 Router C

{b} Channel deadlock among four nodes with wormhole routing; shaded boxes are fiit buffers

Fig. 7.31 Deadlock situations caused by a circular wait at buffers or at communication channels
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Four flits from four messages occupy the four channels simultaneously. If none of the channels in the
cycle is freed, the deadlock situation will continue. Circular waits are further itlustrated in Fig. 7.32 using a
channel-dependence graph.

The channels involved are represented by nodes, and directed arrows are used to show the dependence
relations among them. A deadlock avoidance scheme is presented using virtual channels.

Deadlock Avoidance By adding two virtual channels, V'3 and ¥, in Fig. 7.32¢, one can break the deadlock
cycle. A modified channel-dependence graph is obtained by using the virtual channels ¥; and ¥}, after the use
of channel C,, instead of reusing C; and Cj.

The cycle in Fig, 7.32b is being converted to a spiral, thus avoiding a deadlock. Channel multiplexing can
be done at the flit ievel or at the packet level if the packet length is sufficiently short. Virtual channels can be
implemented with either unidirectional channels or bidirectional channels.

{b) Channel-dependence graph containing a cycle

€
& WG
%
&

{c} Adding two virtual channels (V3, V4} (d) Amodified channel-dependence graph using the virtual channels

Fig. 7.32 Deadlock avoidance using virwal channels to convert a ¢ycle to a spiral on a channel-dependence
graph

The use of virtual channels may reduce the effective channel bandwidth available to each request. There
exists a tradeoff between network throughput and communication latency in determining the degree of using
virtual channels. High-speed multiplexing is required for implementing a large number of virtual channels,

7.4.3 Flow Control Strategies

In this section, we examine various strategies developed to control smooth network traffic flow without
causing congestion or deadlock situations. When two or more packets collide at a node when competing for
buffer or channel resources, policies must be set regarding how to resolve the conflict.

Based on these policies, we describe below deterministic and adaptive routing algorithms developed for
one-to-one i.e. unicast communication. -
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Packet Collision Resolution In order to move a flit between adjacent nodes in a pipeline of channels, three
elements must be present: (1) the source buffer holding the flit, (2) the channel being allocated, and (3) the
receiver buffer accepting the flit.

When two packets reach the same node, they may request the same receiver buffer or the same outgoing
channel. Two arbitration decisions must be made: (i) Which packet will be allocated the channel? and (ii)
What will be done with the packet being denied the channel? These decisions lead to the four methods
illustrated in Fig. 7.33 for coping with the packet collision problem.,

Figure 7.33 illustrates four methods for resolving the conflict between two packets competing for the use
of the same outgoing channel at an intermediate node. Packet | is being allocated the channel, and packet 2
being denied. A buffering method has been proposed with the virfual cut-through routing scheme devised by
Kermani and Kleinrock (1979).

Packet 2 is temporarily stored in a packet buffer. When the channel becomes available later, it will be
transmitted then. This buffering approach has the advantage of not wasting the resources already allocated.
However, it requires the use of a large buffer to hold the entire packet.

Furthermore, the packet buffers along the communication path should not form a cycle as shown in
Fig. 7.31a. The packet buffer however may cause significant storage delay. The virtual cut-through method
offers a compromise by combining the store-and-forward and wormbhole routing schemes. When collisions
do not occur, the scheme should perform as well as wormhole routing. In the worst case, it will behave like
a store-and-forward network.

Pure wormhole routing uses a blocking policy in case of packet collision, as illustrated in Fig. 7.33b. The
second packet is being blocked from advancing; however, it is not being abandoned. Figure 7.33¢ shows the
discard policy, which simply drops the packet being blocked from passing through.

The fourth policy is called detour (Fig. 7.33d). The blocked packet is routed to a detour channel. The
blocking policy is economical to implement but may resuit in the idling of resources allocated to the blocked
packet.

Packet 1
Outgoing Control | | Packet 1
o -
Packet 2 channel >
Packet buffer Packet 2 @ Tl
{a) Buffering in virtual cut-through routing (b) Blocking ftow control
| Packet 1 Detour channel4 I Packet 1
I _
Packet 2 Qutgoing
——
Packet 2 channel
{c} Discard and retransmission {d} Detour after being blocked

Fig. 7.33 Fow control methods for resolving a collision between two packets requesting the same outgoing
channel (packet 1 being allocated the channel and packet 2 being denied)
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The discard policy may result in a severe waste of resources, and it demands packet retransmission and
acknowledgment. Otherwise, a packet may be lost after discarding. This policy is rarely used now because of
its unstable packet delivery rate. The BBN Butterfly network had used this discard policy.

Detour routing offers more flexibility in packet routing. However, the detour may waste more channel
resources than necessary to reach the destination, Furthermore, a re-routed packet may enter a cycle of
livelock, which wastes network resources. Both the Connection Machine and the Denelcor HEP had used this
detour policy.

In practice, some multicomputer networks use hybrid policies which may combine the advantages of some
of the above flow control policies.

Dimension-Order Routing Packet routing can be conducted deterministically oradaptively. In deterministic
routing, the communication path is completely determined by the source and destination addresses. In other
words, the routing path is uniquely predetermined in advance, independent of network condition.

Adaptive routing may depend on network conditions, and alternate paths are possible. In both types of
routing, deadlock-free algorithms are desired. Two such deterministic routing algorithms are given below,
based on a concept called dimension order routing.

Dimension-order routing requires the selection of successive channels to follow a specific order based on
the dimensions of a multidimensional network. In the case of a two-dimensional mesh network, the scheme
is called X-Y routing because a routing path along the X-dimension is decided first before choosing a path
along the Y-dimension. For hypercube (ot n-cube) networks, the scheme is called E-cube routing as originally
proposed by Sullivan and Bashkow (1977). These two routing algorithms are described below by presenting
examples.

E-cube Routing on Hypercube Consider an n-cube with N = 2" nodes. Each node & is binary-coded as
b=b, 1by 3 ... b1bg. Thus the source node is § =5, 3 ... 515¢ and the destinationnode isd=d,_; ... dd. We
want to determine a route from s to & with a minimum number of steps.

We denote the » dimensions as i = 1,2, ..., n, where the ith dimension corresponds to the ({ — 1)st bit in the
node address. Let v =1v,_; ... v, be any node along the route. The route is uniquely determined as follows:

1. Compute the direction bit ;= s, @ d,_, for all n dimensions (i = 1, ..., n). Start the following with
dimensioni=1and v=-7.

2. Route from the current node v to the next node v & 2" Vif r, = 1. Skip this step if r; = 0.

3. Move to dimension i + 1 (i.e. i « i + 1). If i € n, go to step 2, else done.

L)
& Example 7.4 E-cube routing on a four-dimensional
hypercube

The above E-cube routing algorithm is illustrated with the example in Fig. 7.34. Now n = 4,5 =0110, and
d=1101. Thus r = rgraror; = 1011, Route from s to s ® 2°= 0111 since r, =0 @ 1 = 1. Route from v = 0111
tov@®2' =0101 since r, = 1 ® 0 = 1. Skip dimension / = 3 because r; =1 @ 1 =0. Route from v = 0101 to
v@®2°=1101=dsince ry = 1.
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dim 2 dim 3
Source: 5=0110
Destination: d=1101
Route:
dim 1 0110 5011101011101
dim 4
0110 0111 1110 1111
0010 0011
D10 01
¥
0101 100 101
0001 1000 100
0000

Fig. 7.34 " E-cube routing on a hypercube computer with 16 nodes

- ;)7

The route selected is shown in Fig. 7.34 by arrows. Note that the route is determined from dimension 1
to dimension 4 in order. If the ith bit of s and 4 agree, no routing is needed along dimension i. Otherwise,
move from the current node to the other node along the same dimension. The procedure is repeated until the

destination is reached.

X-Y Routing on a 2D Mesh The same idea is applicable to mesh-connected networks. X-Y routing is
illustrated by the exampie in Fig. 7.35. From any source node s = (x|y|) to any destination node d = (x,1,),
route from s along the X-axis first until it reaches the column Y,, where d is located. Then route to 4 along

the Y-axis.

There are four possible X-Y routing patterns corresponding to the east-north, east-south, west-north, and

west-south paths chosen.

$b)

multicomputer

Example 7.5 X-Y routing on a 2D mesh-connected

Four (source, destination) pairs are shown in Fig. 7.35 to illustrate the four possible routing patterns on a

two-dimensional mesh.
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An east-north route is needed from node (2,1) to node (7.6). An east-south route is set up from node (0,7)
to node (4,2). A west-south route is needed from node (5,4) to (2,0). The fourth route is west-north bound
from node (6,3) to node (1,5). If the X-dimension is always routed first and then the Y-dimension, a deadlock
or circular wait situation will not exist.

Four (source; destination) pairs: (2,1,7.6}—> (0,7:4,2)— {5.4;2,0)—== (6,3;1,5)---~

Fig.7.35 X-Y routing on a 2D mesh computer with 8 X 8 = 64 nodes.

It is left as an exercise for the reader to prove that both E-cube and X-Y schemes result in deadlock-free
routing. Both can be applied in either store-and-forward or wormhole-routed networks, resulting in 2 minimal
route with the shortest distance between source and destination.

However, the same dimension order routing scheme cannot produce minimal routes for torus networks.
Nonminimal routing algorithms, producing deadlock-free routes, allow packets to traverse through longer
paths, sometimes to reduce network traffic or for other reasons.

Adaptive Routing The main purpose of using adaptive routing is to achieve efficiency and avoid deadlock.
The concept of virtual channels makes adaptive routing more economical and feasible to implement. We have
shown in Fig. 7.32 how to apply virtual channels for this purpose. The idea can be further extended by having
virtual channels in all connections along the same dimension of a mesh-connected network (Fig. 7.36).
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(a} Original mesh without virtual channel (b) Two pairs of virtual channels in Y-dimension
02 f—i 12 = 22 02 - 12 22
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(¢) For a westbound message {d) For an eastbound message

Fig.7.36 - Adaptive X-Y routing using virtual channels to avoid deadlock; only westbound and eastbound traffic

are deadlock-free (Courtesy of Lionel Ni, 1991)

This example uses two pairs of virtual channels in the Y-dimension of a mesh using X-Y routing.

For westbound traffic, the virtual network in Fig. 7.36¢ can be used to avoid deadlock because all eastbound
X-channels are not in use. Similarly, the virtual network in Fig. 7.36d supports only eastbound traffic using
a different set of virtual Y-channels.

The two virtual networks are used at different times; thus deadlock can be adaptively avoided. This concept
will be further elaborated for achieving deadlockiree multicast routing in the next section.

Example 7.6 Adaptive X-Y routing using virtual channels

7.4.4 Multicast Routing Algorithms

Various communication patterns are specified below. Routing efficiency is defined. The concept of virtual
networks and network partitioning are applied to realize the complex communication patterns with efficiency.

Communication Patterns  Four types of communication patterns may appear in multicomputer networks.
What we have implemented in previous sections is the one-to-one unicast pattern with one source and one
destination.

A multicast pattemn corresponds to one-to-many communication in which one source sends the same
message to multiple destinations.

A broadcast pattern corresponds to the case of one-to-all communication. The most generalized pattern is
the many-to-many conference communication.
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In what follows, we consider the requirements for implementing multicast, broadcast, and conference
communication patterns. Of course, all patterns can be implemented with multiple unicasts sequentially, or
even simultaneously if resource conflicts can be avoided. Special routing schemes must be used to implement
these multi-destination patterns.

Routing Efficiency Two commonly used efficiency parameters are channel bandwidth and communication
latency. The channel bandwidth at any time instant (or during any time period) indicates the effective data
transmission rate achieved to deliver the messages. The latency is indicated by the packet transmission delay
involved.

An optimally routed network should achieve both maximum bandwidth and minimum latency for the
communication patterns involved. However. these two parameters are not totally independent. Achieving
maximum bandwidth may not necessarily achieve minimum latency at the same time, and vice versa.

Depending on the switching technology used, latency is the more important issue in a store-and-forward
network, while in general the bandwidth affects efficiency more in a wormhole-routed network.

L
& : Example 7.7 Multicast and broadcast on a mesh-connected
computer

Multicast routing is implemented on a 3 x 3 mesh in Fig. 7.37. The source node is identified as §, which
transmits a packet to five destinations labeled D, fori= 1,2, ..., 5.

00 @ & O e

3
4
minjnln (] [ [P
b L A F 3
D5
Ean==="1 o5 3]
(a) Five unicasts with traffic = 13 (b) A multicast pattern with traffic = 7
and distance = 4 and distance = 4

O =6 1A GHE
000 & pEnS O

LA s 1 2]

(¢) Another multicast pattern with {d) Broadcast to all nodes via a tree (numbers
traffic = 6 and distance = 5 in nodes correspond to levels of the tree)

Fig.7.37 Multiple unicasts, multicast patterns, and a broadcast tree ona 3 x 4 mesh computer
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This five-destination multicast can be implemented by five unicasts, as shown in Fig. 7.37a. The X-Y
routing traffic requires the use of 1 + 3 +4 + 3 + 2 = 13 channels, and the latency is 4 for the longest path
leading to D3.

A multicast can be implemented by replicating the packet at an intermediate node, and multiple copies of
the packet reach their destinations with significantly reduced channel traffic.

Two multicast routes are given in Figs. 7.37b and 7.37c¢, resulting in traffic of 7 and 6, respectively. On a
wormhole-routed network, the multicast route in Fig. 7.37¢ is better. For a store-and-forward network, the
route in Fig. 7.37b is better and has a shorter latency.

A four-level spanning tree is used from node S to broadcast a packet to all the mesh nodes in Fig. 7.37d.
Nodes reached at level 7 of the tree have latency /. This broadcast tree should result in minimum latency as
well as in minimurm traffic.

D)

To broadcast on an »-cube, a similar spanning tree is used to reach all nodes within a latency of ». This
is illustrated in Fig. 7.38a for a 4-cube rooted at node 0000. Again, minimum traffic should result with a
broadcast tree for a hypercube.

Example 7.8 Multicast and broadcast on a hypercube
computer

0110 a1 110 1M

1101

1111

{b) A muiticast tree from node 0101 to seven destination nodes
1100, 0111, 1010, 1110, 1011, 1000, and 0010

Fig. 7.3B Broadcast tree and multicast tree on a 4.cube using a greedy algorithm (Lan, Esfahnian, and Ni, 1990}
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A greedy multicast tree is shown in Fig. 7.38b for sending a packet from node 0101 to seven destination
nodes. The greedy multicast algorithm is based on sending the packet through the dimension(s) which can
reach the most number of remaining destinations.

Starting from the source node § = 0101, there are two destinations via dimension 2 and five destinations
via dimension 4. Therefore, the first-level channels used are 0101 — 0111 and 0101 — 1101,

From node 1101, there are three destinations reachable in dimension 2 and four destinations via dimension
1. Thus the second-level channels used include 1101 — 1111, 1101 — 1100, and 0111 — 0110.

Similarly, the remaining destinations can be reached with third-level channels 1111 — 1110, 1111— 1011,
1100 — 1000, and 0110 — 0010, and fourth-level channel 1110 —1010.

Extending the multicast tree, one should compare the reachability via all dimensions before selecting
certain dimensions to obtain a minimum cover set for the remaining nodes. In case of a tie between two
dimensions, selecting any one of them is sufficient. Therefore, the tree may not be uniquely generated.

It has been proved that this greedy multicast algorithm requires the least number of traffic channels
compared with multiple unicasts or a broadcast tree. To implement multicast operations on wormhole-routed
networks, the router in each node should be able to replicate the data in the flit buffer.

In order to synchronize the growth of a multicast tree or a broadcast tree, all outgoing channels at the same
level of the tree must be ready before transmission can be pushed one level down. Otherwise, additional
buffering is needed at intermediate nodes.

Virtual Networks Consider a mesh with dual virtual channels along both dimensions as shown in
Fig. 7.39%a.

These virtual channels can be used to generate four possible virtual networks. For west-north traffic, the
virtual network in Fig. 7.39b should be used.

(b} West-north subnet {c) East-north subnet (d) West-south subnet (e) East-south subnet

Fig.7.39 Four virtual networks implementable from a dual-channel mesh
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Similarly, one can construct three other virtual nets for other traffic orientations. Note that no cycle is
possible on any of the virtual networks. Thus deadlock can be completely avoided when X-Y routing is
implemented on these networks.

if both pairs between adjacent nodes are physical chanmels, then any two of the four virtual networks can
be simultancously used without conflict. If only one pair of physical channels is shared by the dual virtual
channels between adjacent nodes, then only (b) and (e) or (¢) and (d) can be used simultaneously.

Other combinations, such as (b) and (c), or (b) and (d), or (¢} and (e), or (d) and (e), cannot coexist at the
same time due to a shortage of channels.

Obviously, adding channels to the network will increase the adaptivity in making routing decisions.
However, the increased cost can be appreciable and thus prevent the use of redundancy.

Network Partitioning The concept of virtual networks leads to the partitioning of a given physical network
into logical subnetworks for multicast communications. The idea is illustrated in Fig. 7.40.

West East

North < > North

South > South

Fig. 7.40 Partitioning of a 6 X B mesh into four subnets for a multicast from source node (4,2). Shaded nades
are along the boundary of adjacent subnets (Courtesy of Lin, McKinly, and Ni, 1991)

Suppose source node (4, 2) wants to transmit to a subset of nodes in the 6 x 8 mesh. The mesh is partitioned
into four logical subnets. All traffic heading for east and north uses the subnet at the upper right corner.
Similarly, one constructs three other subnets at the remaining corners of the mesh.

Nodes in the fifth column and third row are along the boundary between subnets. Essentially, the traffic
is being directed outward from the center node (4, 2). There is no deadlock if an X-Y multicast is performed
in this partitioned mesh.

Similarly, one can partition a binary n-cube into 2" 1 subcubes to provide deadlock-free adaptive routing.
Each subcube has 7 + 1 levels with 2" virtual channels per level for the bidirectional network. The number
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of required virtual channels increases rapidly with n. Ii has been shown that for low-dimensional cubes
(n = 2 to 4), this method is best for general-purpose routing.

/.‘
\., 4_‘ o

i~ | Summary

In a multiprocessor system, interconnects between sub-systems such as processors, memories and
network controllers play a crucial role in determining system performance. The earliest multiprocessor
systems were bus-based, with shared main memory.The bus is a simple interconnect, but it has limitations
in scalability. Hierarchical bus systems can address the problem to a limited extent, but as systems grow
larger, more sophisticated and scalable system interconnects are needed.

A network may be of blocking or non-blocking type.We studied the crossbar network and the basic
design of a row of crosspoint switches, with its arbitration and rnulﬂplexer modules. While it has better
aggregate bandwidth than the bus, the crossbar network also has limitations of scalability. Multi-port
memory can be used to enhance the aggregate bandwidth of a memory module.

We studied Omega and Butterfly multistage networks. Larger Omega networks can be built using 2x2
and 4x4 basic switches, while the Butterfly network is built from modules of crossbar switches. When
network traffic is non-uniform, so-called ‘hot-spots’ may develop which may degrade network performance.
The concept of combining networks was developed in an attempt to address this performance limitation.

We studied the related issues of maintaining cache coherence and synchronization. Write operations
on shared cache data, process migration and /O operations can cause loss of cache coherence. If all the
caches are on a common bus, then the snoopy bus protocol can be used to maintain cache coherence.
Directory-based cache coherence protocols—using full map, limited or chained directories—can be used
on more general types of system interconnects. Details of the schemes vary between write-back and
write-through types of cache.

Hardware synchronization mechanisms between processors make use of atomic operations typified
by Test&Set. However, at a still lower level of hardware, in theory wired barrier synchronization can also
be used, of which we saw examples.

Three early generations of multicomputer systems were studied, providing a picture of how
multicomputer architecture has evolved over time. Broadly, the trend has been from expensive to low
cost processors, from shared to distributed memory, and (with higher speed processors) to higher speed
interconnects.We studied the Intel Paragon system as a specific example, laying the basis to review:more
recent advances in Chapter 13.

Message-passing communication uses networks of point-to-point links, the basic aim of routing
protocols being to achieve low network latency and high bandwidth. We studied the typical formats
of messages, packets, and flits (flow control digits); routing schemes were studied from the points of
view of latency analysis and the avoidance of deadlocks.We examined the important concepts of virtual
channels, wormhole routing, flow control, collision resolution, dimension order routing, and multicast
communication. 3 '
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Problem 7.1 Consider a multiprocessor with
n processors and m shared-memory modules, all
connected to the same backplane bus with a central
arbiter as depicted below:

< Data Transfer Bus >

Arbiter

Selected Request

Address Bus >

< h

Assume m > nand all memory moduies are equally
accessible to each processor. In other words, each
processor generates a request for any module with
probability 1/m. The address bus and the DTB can
be used at the same time to serve different requests.
Both buses take one cycle to pass the address of a
request or to transfer one word of 4 bytes between
memory and processor. At each bus cycle (1), the
arbiter randomly setects one of the requests from
the processors.

Once a memory module is identified at the
end of the address cycle (one bus cycle), it takes a
memory cycle (which equals ¢ bus cycles) to retrieve
the addressed word from the memory medule,
and another bus cycle to transfer the word to the
requesting processor via the data transfer bus.

Until a memory cycle is completed, the arbiter
will not issue another request to the same module.
All rejected requests are ignored and resubmitted in
subsequent bus cycles until being selected.

(a) Calculate the memory bandwidth defined
as the average number of memory words
transferred per second over the DTBif n = 8,
m=16,7=10ns,and ¢ - 7= 87 =80 ns.

(b) Calculate the memory utilization defined as
the average number of requests accepted by
all memory medules per memery cycle using
the same set of parameters used in part (a).

Problem 7.2 Use two-input AND and OR gates
(no wired-OR) to construct an n X n crossbar switch
network between n processors and n memory
modules. Let the width of each crosspoint be w bits
{or a word) in each direction.

{a) Prepare a schematic design of a typical
crosspoint switch using ¢; as the enable signal
for the switch in the ith row and jth column.
Estimate the total number of AND and OR
gates needed as a function of n and w.

(b} Assume that processor P; has higher priority
over processor P if i < j when they are
competing for access to the same memory
moduie. Let k = log; n be the address width.
Design an arbiter which generates all the
crosspoint enable signais c;, again using only
two-input AND and OR gates and some
inverters if needed. The memory address
decoder is assumed available from each
processor and thus is not included in the
arbiter design. Indicate the complexity of the
arbiter design as a function of n and k.

Problem 7.3 Consider a dual-processor (P1
and P2) system using write-back private caches
and a shared memory, all connected to a common
contention bus. Each cache has four block frames
labeled betow as 0, 1, 2, 3.
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Cache 1

Wi | = |O

Bus

l Main Memory |

W=D

The shared memory is divided into eight cache
blocks as 0, 1, ..., 7. To maintain cache coherence,
the system uses a three-state {RO, RW, and invalid)
snoopy protocol based on the write-invalidate policy
described in Fig. 7.12b.

Assume the same clock drives the processors and
the memory bus. Within each cycle, any processor
can submit a request to access the bus. In case of
simultaneous bus requests from both processors,
the request from P1 is granted and P2 must wait
one or more cycles to access the bus.

In all cases, the bus allows only one transaction
per cycle. Once a bus access is granted, the
transaction must be completed before the next
request is granted.When there is no bus contention,
memory-access events from each processor may
require one to two cycles to complete, as specified
below separately:

+ Read-hit in cache requires one cycle and no
bus request at all.

+ Read-miss in cache requires two cycles
without contention: one for block feteh and
one for CPU read from cache.

» Write-hit requires one cycle for CPU write
and bus invalidation simultaneously.

* Write-miss requires two cycles: one for
block fetch and bus invalidation, and one for
CPU write.

» Replacement of a dirty block requires one
cycle to update memory via the bus.

(a) In the case of bus contention, one additional

cycle is needed for bus arbitration in all the
above cases except a read-hit.

Cache 2
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(i) Show how to map the eight cache blocks
to four cache block frames using a direct-
mapping cache organization.

(i) Show how to map the eight cache biock
frames using a two-way set-associative
cache organization.

(b) Consider the following two asynchronous
sequences of memory-access events, where
boldface numbers are for write and the
remaining are for read.

Processor #1:0,0,0,1,1,4,3,3,5,5,5
Processor #2 :2,2,0,0,7,5,5,5,7,7,0

(i) Trace the execution of these two sequences
on the two processors by executing the
successive blocks. Both caches are initially
flushed (empty). Assume a direct-mapping
organization in both caches. Indicate the
state {RO or RW) of each valid cache block
and mark cache miss and bus utilization
(busy or idle) in the block trace for each
cycle. Assume that the very first memory-
access events from both processors take
place in cycle 1 simuitaneously. Calculate the
hit ratio of cache 1 and cache 2, respectively.

() Assume a two-way set-associative cache
organization and a LRU cache block
replacement policy.

Problem 7.4 Consider the execution of 24 code
segments, § through 5,4, following a given precedence
graph on a multiprocessor with four processors and
six memory modules as shown below. Assume all
segments have the same gain size and execute with
equal time. When two or mere processors try to
access the same memory medule at the same time,
the request of the lowest numbered processor is
granted and the rest of the requests are deferred to
later segment time steps.

A processor waiting from an earlier memory-
access rejection has seniority priority over new
requests to access the same memory module. No
processor should wait for more than three steps
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to access any given memory module. Each code
segment takes a fixed unit time to access a memory
and to execute. Assume that the four processors are
synchronized in each segment execution instruction
cycie.

In some cases, a singfe segment may require access
to several memory modules simultaneously. Ignore
the contention problem in the interconnection
network. The four processors operate in MIMD
mode, and different instructions can be executed by
different processors during the same cycle.

What is the average memory bandwidth in words
per unit time? Try to achieve the minimum execution
time by maximizing the degree of parallelism at all
steps.

Note that at each step some of the memory
modules may be idle. The highest possibie memory
bandwidth is six words per step. Some segments may
require a wait of no more than three steps before
granting of the memory access requested. But such
a waiting period should be minimized.

Processor

instr, P1 Pz P] P4
5 M; Mg M,
S M, M, M, M,
S, M; M;
S4 M; M; M, M,
Sg M, M, M,

S M, M, M3
Sy Mg M;
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Sg M; M,

5o M; M, M,

St0 M, M; M, M,
541 M, M,y M M,
$12 M, M, M;
513 M, M5
S14 M, M;s My
545 M, M3 M;

546 M, M, M; M4
Sy7 M,

Sts M, Mg

549 M, M, M, M,
S0 M; M; My
521 M, M,
Sn M; M, Mg
53 My M, Ms M3
Sy M; My

Problem 7.5 This problem is based on Fig. 7.11
which combines multiple Fetch&Add requests to the
same shared variable in a common memory.

(a) Show the necessary combining network
components needed to combine four
Fetch&Add (x, &) fori=1,2,3,4.

{b) Show the successive snapshots and variations
in switch and memory contents, as in Fig. 7.11,
for combining the four requests.

Problem 7.6 You have learned about a two-way
shuffle (perfect shuffle) in Fig. 2.14 and a four-way
shuffle in Fig. 7.9. Generalize the mappings to an
m-way shuffle over n objects, where m x k = n for
some integer k = 2, for the construction of the class
of Delta networks introduced by Patel {1980).

(a) Show how to perform a four-way shuffle over
12 objects.

(b) Use a minimum number of 4 x 3 switch
modules and a four-way shuffle mapping as
an interstage connection pattern to build a
64-input, 27-output Delta network in three
stages.

(c) In general, an n-stage a" x b" Deita network
is implemented with @ x b switch modules as
shown in Fig. 2.23, Calculate the total number
of switch modules needed and specify the
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interstage connection pattern from b" inputs
to @ outputs.

(d) Figure out a simple routing scheme to control
the switch settings from stage to stage in an
a” x b" Delta network with n stages.

{e) What is the relationship between Omega
networks and Delta networks!?

Problem 7.7 Prove the following properties
associated with multistage Omega networks using
different-sized building blocks:

(a) Prove that the number of legitimate states
(connections) in a k x k switch module equals
K.

{b) Determine the percentage of permutations
that can be realized in one pass through a
64-input Omega network built with 2 x 2
switch modules.

{c) Repeat part (b) for a 64-input Omega network
built with 8 x 8 switch modules,

(d) Repeat part (b) for a 512-input Omega
network built with 8 x 8 switch modules.

Problem 7.8 Consider the interleaved execution
of k programs in a multiprogrammed multiprocessor
using m wired-NOR synchronization lines on n
processors as described in Fig. 7.1%a.

In general, the number m; of barrier lines needed
for a program i is estimated as m; = b; [q;/P] + 1, where
b; = the number of barriers demanded in program i,
gq; = the number of processes created in program
i, and P; = the number of processors aliocated to
program i

Thus m = m; + my + ...+ m,.For simplicity,assume
b,=band q;=qfori=1,2,...,kand P, = min(nik, q)
processors are allocated to each program i.

Prove that m can be approximated by b - q -

K2In + k, or that the degree of multiprogramming is

k < (—n+,/n2+4qun)!(2bq) in such a

multiprocessor system. Note that bq represents the
number of required synchronization points, which
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depends on the parallelism profiles in user programs.
For fixed values of bq and n, the maximally aliowed

multiprogramming degree k increases with respect

to [/m.

Problem 7.9 Wilson {(1987) proposed a
hierarchical cache/bus architecture (Fig. 7.3) and
outlined how multilevel cache coherence can be
enforced by extending the write-invalidate protocol.
Can you figure out a write-broadcast protocol for
achieving multilevel cache coherence on the same
hardware platform? Comment on the relative
merits of the two protocols. Feel free to modify
the hardware in Fig. 7.3 if needed to implement the
write-broadcast protocol on the hierarchical bus/
cache architecture.

Problem 7.10 Answer the following questions on
design choices of muiticomputers made in the past;
(a) Why were low-cost processors chosen over
expensive processors as processing nodes?
(b) Why was distributed memory chosen over
shared memory!
() Why was message passing chosen over
address switching!
(d) Why was MIMD, MPMD, or SPMD control
chosen over SIMD data parallelism?

Problem 7.11 Explain
associated with multicomputer
message-passing mechanisms:

{a) Message, packets, and flits.

(b) Store-and-forward routing at packet level.

(c) Wormhole routing at flit level.

(d) Virtual channels versus physical channels.

(e) Buffer deadlock versus channel deadlock.

(f Buffering flow control virtual

cut-through routing.

(g) Blocking flow control in wormhole routing.

(h) Discard and retransmission flow control.

{i) Detour flow control after being blocked.

(i) Virtual networks and subnetworks.

the following terms
networks and

using
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Problem 7.12

(a) Draw a 16-input Omega network using 2 x 2
switches as building blocks.

{b) Show the switch settings for routing a message
from node 1011 to node 0101 and from node
0111 too node 1001 simultaneously. Does
blocking exist in this case?

{c) Determine how many permutations can be
implemented in one pass through this Omega
network.What is the percentage of one-pass
permutations among alf permutations?

(d} What is the maximum number of passes
needed to implement any permutation
through the network?

Problem 7.13 Explain the following terms as
applied to communication patterns in a message-
passing network:

{a) Unicast versus multicast

(b) Broadcast versus conference

() Channel bandwidth

(d) Communication latency

(e} Network partitioning

communications

for  multicasting

Problem 7.14 Determine the optimal routing
paths in the following mesh and hypercube
multicomputers.

{a} Consider a 64-node hypercube network.
Based on the E-cube routing algorithm, show
how to route a message from node (101101)
to node (011010). All intermediate nodes
must be identified on the routing path,

(b) Determine two optimal routes for multicast
on an 8 x 8 mesh, subject to the following
constraints separately.The source node is
(3, 5), and there are 10 destination nodes
(1.1),(1,2).(1.6), (2. 1), (4, 1),(5,5),(5.7), (6, 1),
(7. 1),(7,5). (i) The first multicast route should
be implemented with a minimum number of
channels, (i) The second multicast route
should result in minimum distances from the
source to each of the 10 destinations,

{¢) Based on the greedy algorithm (Fig. 7.38),
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determine a suboptimal multicast route, with
minimum distances from the source to all
destinations using as few traffic channels as
possible, on a 16-node hypercube network,
The source node is (1010), and there are
9 destination nodes (0000), (0001), (0011),
(0100), (0101), (0111), (1111), (1101), and
(1001).

Problem 7.15 Prove the following statements
with reasoning or analysis or counter-examples:

(a) Prove that E-cube routing is deadlock-free
on a wormhole-routed hypercube with a pair
of opposite unidirectional channels between
adjacent nodes.

(b} Prove that X-Y routing is deadlock-free on a
2D mesh.

(c) Prove that E-cube routing on the 3D mesh
(k-ary n-cube) used in the J-Machine is
deadlock-free with wormhole routing and
blocking flow control.

Problem 7.16 Study the Turn model for adaptive
routing proposed by Glass and Ni (1992) in the
1992 Annual International Symposium on Computer
Architecture. Answer the following questions:
(a) Why is the Turn model deadlock-free from
having cycles?
{b) How can the Turn model be applied on an
n-dimensicnal mesh to prevent deadlock?
{¢) How can the Turn model be applied on a
k-ary n-cube to prevent deadlock?

Problem 7.17 The following assignments are
related to the greedy algorithm for multicast routing
on a wormhole-routed hypercube network.

(a) Formulate the successive steps of the greedy
algorithm {Example 7.8) as a minimum cover
problem, similar to that practiced in Karnaugh
maps.

(b) Prove that the greedy algorithm always yields
the minimum network traffic and minimum
distance from the source to any of the
destinations.
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Problem 7.18 Consider the implementation of
Goodman's write-once cache coherence protocol in
a bus-connected multiprocessor system. Specify the
use of additional bus lines to inhibit the main memory
when the memory copy is invalid. Also specify all
other hardware mechanisms and software support
needed for an economical and fast implementation
of the Goodman protocal.

Explain why this protocol will reduce bus
traffic and how unnecessary invalidations can be
eliminated. Consult if necessary the two related
papers published by Goodman in 1983 and 1990.

Problem 7.19 Study the paper by Archibald and
Baer (1986) which evaluated various cache coherence
protocols using a multiprocessor simulation model.
Explain the Dragon protocol implemented in the
Dragon multiprocessor workstation at the Xerox
Palo Alto Research Center. Compare the relative
merits of the Goodman protocol, the. Firefly
protocol, and the Dragon protocol in the context
of implementation requirements and expected
performance.

Problem 7.20 The Cedar multiprocessor at
Iifinois was built with a clustered Omega network
as shown below. Four 8 x 4 crossbar switches
were used in the first stage and four 4 x 8 crossbar
switches were used in the second stage.There were
32 processors and 32 memory modules, divided into
four clusters with eight of each per cluster.

(a) Figure out a fixed priority scheme to avoid
conflicts in using the crossbar switches for
nonblocking connections. For  simplicity,
consider only the forward connections from
the processors to the memory modules.

(b) Suppose both stages use 8 X 8 crossbar
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switches. Design a two-stage Cedar network
to provide switched connections between
64 processors and 64 memory modules, again
in a clustered manner similar to the above
Cedar network design.

(c) Further expand the Cedar network to three
stages using 8 x 8 crossbar switches as building
blocks to connect 512 processors and 512
memory modules. Show the schematic
interconnections in all three stages from the
input end to the output end.
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